Theoretical consideration of collision electron spectroscopy (CES) for gaseous media analysis and experimental results on CES detector are presented. It is demonstrated that a diffusion path confinement for characteristic electrons provides a possibility to measure electrons energy distribution function and to find characteristic spectra of species at high (up to atmospheric) gas pressure. Simple micro-plasma CES detector of two plane parallel electrode configuration with current-voltage measurement in afterglow of helium glow discharge may be designed to operate at a high gas pressure up to atmospheric one. Experimental electron energy spectra of pair He metastables collisions in dependence of interelectrode gap are discussed.
Emission parameters and coefficients of reflection of heat electrons from tungsten thermo cathodes were investigated under nontraditional for emission electronic conditions, when the surface contacts with highly ionized plasma. For measurements plasma diode electron current-magnetic field strength relations were used. Parameter Dj, which characterizes cathode heterogeneity by work function, and coefficient of reflection for policrystallic tungsten and for face 110 tungsten single crystal were measured. Proportion entering in effective reflection coefficient of electrons, reflected immediately from the surface and from potential barrier of spots field was determinate.
There is presented a multiprocessor photometric CCD-system for a wide range of spectrometers and for various spectral analysis methods implementation.
Various modes of resistance welding between steel and Ni-Ti-extracting electrodes and fractures of endodontic files were investigated. It was demonstrated that in close to real clinical situations there is most suitable a sequence of a number of pulses of a steepened welding current. As a result, detachment force limit of 15-50 N is achievable which is sufficient for the fracture extraction in most cases.