The distribution of natural (at the level of global background) and technogenic radionuclides in groundwater of the industrial zone in Sosnovy Bor town, where several nuclear power facilities are operating, was analyzed. The main technogenic radionuclides recorded in groundwater samples are cesium ( 137 Cs), strontium ( 90 Sr), and tritium isotopes. The first two aquifers from the surface are subject to contamination: the Quaternary and the upper zone of the Lomonosov aquifer. Based on extensive material on the engineering and geological studies of the work area, a 3D geological model and hydrodynamic and geomigration models of the industrial zone were constructed. By means of modeling, the extent and nature of changes in hydrogeological conditions of area resulting from the construction and operational drainage of the new stage of the Leningrad Nuclear Power Plant (LNPP-2) were determined. The “historical” halo of radioactive contamination of groundwater forming (1970-1990) at the site adjacent to the NPP, where the storage facility of low- and medium-level radioactive waste is located, falls into the zone of influence. Interpretation of monitoring data allowed obtaining the migration parameters for predictive estimates. Modeling has shown that during the time of the LNPP-2 operation there was no intake of contaminated water by the drainage system of the new power plant.
The study presents experimental results illustrating a certain tendencies in the change in physical and mechanical properties of the Vendian clay formations over depth. A comparative analysis of samples from different borehole intervals has arrived at significant coefficients of correlation for the parameters that characterize the degree of the clay water saturation, compaction, and consistency with depth (the elevation of the core-bore sample in the profile). The rock deformation and strength parameters also demonstrate a dependence on the depth. The deformation modulus and the shear strength of the clay increase with increase in the depth of sampling.