-
Date submitted2024-04-16
-
Date accepted2024-06-03
-
Date published2024-07-04
Quantitative determination of sulfur forms in bottom sediments for rapid assessment of the industrial facilities impact on aquatic ecosystems
- Authors:
- Ivan P. Sverchkov
- Vladimir G. Povarov
The article describes an X-ray fluorescence method for quantitative analysis of sulfate and total sulfur in bottom sediments of watercourses and reservoirs located in the area of industrial enterprises impact. The quantitative determination of sulfur forms was carried out by analyzing the characteristic curves SKα1,2 and SKβ1,3, as well as the satellite line SKβ′ on X-ray emission spectra measured by an X-ray fluorescence spectrometer with wavelength dispersion. The study shows that these characteristic curves allow not only to determine the predominant form of sulfur, but also to separately conduct quantitative analyses of sulfates and total sulfur after fitting peaks and to separately analyze overlapping spectral lines. The results of quantitative analysis of the chemical state of sulfur by the proposed X-ray fluorescence method were compared with the results of inductively coupled plasma atomic emission spectroscopy and elemental analysis, as well as certified standard samples of soils and sediments. The results are in good agreement with each other.
-
Date submitted2020-06-14
-
Date accepted2020-06-14
-
Date published2020-06-30
Geochemical approach in assessing the technogenic impact on soils
- Authors:
- Galina I. Sarapulova
The soil assessment was carried out in the technogenically-affected area of Irkutsk Oblast with the geochemical approach as a key geoecological method using physical and chemical techniques of analysis and ecodiagnostics. Diagnostic signs of the disturbed natural properties of the soil were revealed up to a depth of 40 cm in the profile based on macro- and micromorphometric parameters. The content of heavy metals (HM) – Pb, Zn, Hg, and Cu with an excess of standards was determined, and empirical HM – pH correlations were obtained by statistical clustering of the data array. The contributions of additional factors affecting the chemical element distribution in the soil layer were investigated. Significant soil contamination with sulfates and the possibility of implementing the ion-exchange of HM andfor element immobilization were revealed. It was shown that reactions with sulfates and the influence of pH, HM exchange processes involving mobile K and P can determine the nature of the described chemical element distribution in the multi-factor-contaminated technogenic soil. However, the effectiveness of such types of interaction is different for each metal and also depends on the quantitative ratio of substances and soil characteristics, even under a minor change in pH. Two-parameter correlations of HM distribution in sulfate-contaminated soils confirmed the different degrees of involvement of chemical elements in these types of interactions. The results obtained and the identified factors are of applied significance and can be used as the basis for geoecological differentiation of the contaminated soil, as well as for determining local geochemical fields in the technogenesis zone. Areas of advanced research are related to three-dimensional modeling for a more complete study of the cause-and-effect relationships of geochemical parameters.