Submit an Article
Become a reviewer

Search articles for by keywords:
peridotite

Geology
  • Date submitted
    2024-05-02
  • Date accepted
    2024-11-07
  • Date published
    2025-04-29

Mineralogy and thermobarometry of the Kalevian volcano-plutonic complex of the Kaskama block (Inari Terrane, Kola-Norwegian Region, Fennoscandian Shield)

Article preview

The petrogenesis and evolution of metamorphic rocks of the volcano-plutonic units of the Kaskama block of the Inari Terrane in northwestern Russia were studied. A petrographic and mineral study and modeling of igneous and metamorphic mineral formation were performed. PT -conditions of rocks, along with previously known data, including geochronological ones, do not allow us to correlate the studied units with rocks of the Belomorian complex, as previously thought. Modeling of igneous and metamorphic mineral shows good convergence with the fields of stability of mineral parageneses and quantitive ratio of minerals with those observed in the real samples. The early mineral parageneses of the magmatic stage corresponds to the crystallization of rock-forming and accessory minerals from the komatiite melt, and mineral parageneses of progressive and regressive metamorphism stages are superimposed on them. Relic igneous minerals (olivine, clinopyroxene, orthopyroxene, magnetite-spinel) in metaperidotites make it possible to estimate their liquidus temperatures in the range of 1,480-950 °С. The progressive stage of metamorphism is characterized by the development of mineral parageneses: garnet + amphibole + plagioclase + quartz ± biotite, amphibole + plagioclase + quartz. The late low-temperature regressive stage of metamorphism is characterized by the development of epidote-, zoisite-, actinolite-containing associations and a number of other low-temperature minerals. Peak parameters of progressive metamorphism are estimated as Т = 600-700 °С, Р = 5-9 kbar and for the regressive stage as Т = 400-500 °С, Р = 3-5 kbar. The identified thermodynamic conditions for the Kaskama block should be considered when determining whether the studied volcano-plutonic and metasedimentary units belong to the Paleoproterozoic terranes of the Kola-Norwegian Region of the Fennoscandian Shield.

How to cite: Vrevsky A.B., Yurchenko A.V., Baltybaev S.K. Mineralogy and thermobarometry of the Kalevian volcano-plutonic complex of the Kaskama block (Inari Terrane, Kola-Norwegian Region, Fennoscandian Shield) // Journal of Mining Institute. 2025. p. EDN CMIJJB
Geology
  • Date submitted
    2021-04-04
  • Date accepted
    2022-04-26
  • Date published
    2022-07-26

Vendian age of igneous rocks of the Chamberlain valley area (Northern part of the Wedel Jarlsberg Land, Svalbard Archipelago)

Article preview

The geological structure, structural relations with the underlying complexes, mineral composition, age and origin of sedimentary-volcanogenic and intrusive formations of the Chamberlain valley area (northern part of the Wedel Jarlsberg Land, Svalbard Archipelago) are considered. As a result of the studies, two stages of the Late Precambrian endogenous activity in this area have been identified. For the first time the Vendian ages (593-559 Ma) of intrusive (dolerites) and effusive (basalts, andesites, tuffs) rocks were determined by U-Pb-method (SHRIMP-II) for Svalbard Archipelago. At the same time, the Grenville ages for large bodies of gabbro-diorites, metadolerites bodies (1152-967 Ma), and metagranites (936 Ma) were determined for the first time for this area, which correlates well with the ages of magmatic formations obtained earlier in the southern part of Wedel Jarlsberg Land. A detailed petrographic and petrochemical characterization of all the described objects were compiled and the paleotectonic conditions of their formation were reconstructed. Based on these data, the Chemberlendalen series, which is dated to the Late Vendian, and the Rechurchbreen series, which the authors attribute to the Middle Riphean and correlate with the lower part of the Nordbucht series are distinguished. The data obtained indicate a two-stage Precambrian magmatism in this area of the Svalbard archipelago and, most importantly, provide evidence for the first time ever of endogenous activity on Svalbard in the Vendian time. This fact makes it possible to reconsider in the future the history of the formation of folded basement of the Svalbard archipelago and the nature of the geodynamic conditions in which it was formed.

How to cite: Sirotkin A.N., Evdokimov A.N. Vendian age of igneous rocks of the Chamberlain valley area (Northern part of the Wedel Jarlsberg Land, Svalbard Archipelago) // Journal of Mining Institute. 2022. Vol. 255 . p. 419-434. DOI: 10.31897/PMI.2022.20
Geology
  • Date submitted
    2019-05-02
  • Date accepted
    2019-07-25
  • Date published
    2019-10-23

Composition Heterogeneity of Xenoliths of Mantle Peridotites from Alkaline Basalts of the Sverre Volcano, the Svalbard Archipelago

Article preview

The article presents the results of a study of the composition of xenoliths of mantle peridotites (seven samples), collected from the Quaternary basalts of the Sverre volcano, the Svalbard archipelago. The presence of two big (more than 15 cm in diameter) xenoliths of spinel lherzolite allowed us to consider a change in their composition in the cen- tral, intermediate, and marginal parts of the samples. It is proposed to distinguish three types of xenoliths by the distribution of trace and rare earth elements. Enrich- ment of mantle peridotites with light rare earth elements, as well as high field strength (HFS) and large-ion lithophile (LIL) elements, is presumably associated with mantlemetasomatism.

How to cite: Skublov S.G., Ashikhmin D.S. Composition Heterogeneity of Xenoliths of Mantle Peridotites from Alkaline Basalts of the Sverre Volcano, the Svalbard Archipelago // Journal of Mining Institute. 2019. Vol. 239 . p. 483-491. DOI: 10.31897/PMI.2019.5.483