Submit an Article
Become a reviewer

Search articles for by keywords:
эксплуатационная колонна

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-11
  • Date accepted
    2023-09-20
  • Date published
    2023-10-27

Current state of above-ground and underground structures of the Alexander Column: an integral basis for its stability

Article preview

The Alexander Column as a compositional center of the architectural ensemble of Palace Square in Saint Petersburg, Russia, has always been a matter of concern for both the public and specialists due to progressive deterioration of its granite shaft caused by crack formation. The article examines previous studies related to the inspection and restoration of the column's shaft and other parts above ground level, as well as reasons for crack initiation and propagation in the column. An analysis was performed on the anomalies in the Fennoscandian Shield and the structural-tectonic conditions at the Montferrand quarry site, revealing the presence of faults and circular features within the studied area. The research considers N.Hast's measurements of excess tectonic stresses in anomaly zones (southeastern Finland), which acted horizontally and resulted in the development of tensile cracks within the granite massif and later in the column’s shaft after its installation. The most dangerous type of deformation for the Alexander Column is its tilt in the northeast direction, recorded in 1937 and 2000. The article analyzes the construction features of the column's foundations and additional underground elements, as well as soil and groundwater characteristics based on archival data. The contamination history of the underground space is taken into account, and an analogy-based method is used to assess the engineering-geological and hydrogeological conditions of the underground load-bearing structures within the placement zone of the Alexander Column and the New Hermitage buildings. The results of visual observations on the nature of deterioration and deformation of the pavement around the monument, as well as its pedestal, indicating the development of uneven settlement of the foundation, are presented. The article concludes with general recommendations for organizing and implementing comprehensive monitoring to forecast the deformation dynamics of the Alexander Column.

How to cite: Dashko R.E., Karpenko A.G. Current state of above-ground and underground structures of the Alexander Column: an integral basis for its stability // Journal of Mining Institute. 2023. Vol. 263. p. 757-773. EDN OSYEHQ
Geology
  • Date submitted
    2019-10-30
  • Date accepted
    2019-11-23
  • Date published
    2020-02-25

Methodology for determining the parameters of drilling mode for directional straight sections of well using screw downhole motors

Article preview

Article presents results of study on possibility of increasing the efficiency of drilling directional straight sections of wells using screw downhole motors (SDM) with a combined method of drilling with rotation of drilling string (DS). Goal is to ensure steady-state operation of SDM with simultaneous rotation of DS by reducing the amplitude of oscillations with adjusting the parameters of drilling mode on the basis of mathematical modeling for SDM – DS system. Results of experimental study on determination of extrema distribution of lateral and axial oscillations of SDM frame depending on geometrical parameters of gerotor mechanism and modes ensuring stable operation are presented. Approaches to development of a mathematical model and methodology are conceptually outlined that allow determining the range of self-oscillations for SDM – DS system and boundaries of rotational and translational wave perturbations for a heterogeneous rod with an installed SDM at drilling directional straight sections of well. This mathematical model of SDM – DS system's dynamics makes it possible to predict optimal parameters of directional drilling mode that ensure stable operation of borehole assembly.

How to cite: Litvinenko V.S., Dvoinikov M.V. Methodology for determining the parameters of drilling mode for directional straight sections of well using screw downhole motors // Journal of Mining Institute. 2020. Vol. 241. p. 105-112. DOI: 10.31897/PMI.2020.1.105
Mining
  • Date submitted
    2020-01-09
  • Date accepted
    2020-01-17
  • Date published
    2020-02-25

Methodology for Calculating the Stability of the Polymer Operating String in Permafrost

Article preview

The goal of this paper is to develop a methodology for calculating the stability of an annular cross-section string casing made of polymer material used for the development of mineral deposits by underground leaching in permafrost formations. The aim was to determine the geometric parameters of the casing and to ensure its operational reliability. The relevance of the research is associated with the peculiarities of external influences on the string, for example, a geotechnological well operating in permafrost formation under conditions of additional exposure to ice pressure during freezing of water in the borehole annulus. This effect is usually accompanied by deformation of the casing due to ice pressure, which can lead to string collapse, abnormal operation and the risk of contamination of the geological environment. The proposed calculation method for a polymer casing is based on simulation of objects using the finite element method. We used the spatial finite elements to model the interaction of key elements of the geotechnological natural-technogenic complex: a polymer casing, ice in the annulus space and homogeneous or heterogeneous rock masses adjacent to the well. The results of the study are presented in the form of tables and patterns of displacements, which reflect stresses and strains in the elements of the calculation scheme. The analysis of the obtained results confirms the possibility of using polymer casings of different technological purposes in various conditions of permafrost formation, including extreme ones. The results of the redistribution of pressure created by ice during the freezing of water in the borehole annulus to the rock mass and the string are evaluated. Interdependent deformations of the rock mass and operating string during freezing of water in the borehole annulus are determined. The necessity of considering the properties of the rock mass in determining the pressure on the string is established. The conditions for the collapse of the string with a different combination of its parameters are revealed.

How to cite: Stetukha V.A., Zheleznyak I.I. Methodology for Calculating the Stability of the Polymer Operating String in Permafrost // Journal of Mining Institute. 2020. Vol. 241. p. 22-28. DOI: 10.31897/PMI.2020.1.22
Oil and gas
  • Date submitted
    2018-09-07
  • Date accepted
    2018-11-10
  • Date published
    2019-02-22

Justification of the technological parameters choice for well drilling by rotary steerable systems

Article preview

Paper presents the analysis of the investigation results of vibrational accelerations and beating amplitudes of the downhole drilling motor, which help to define the ranges of optimum energy characteristics of the gerotor mechanism, ensuring its stable operation. Dependencies describing the operation of the «drilling bit – rotary steerable system with power screw section – drilling string» system and the values of the self-oscillation boundaries and the onset of system resonance when it is used jointly, were defined as a result of computational and full-scale experimental research. A mathematical model is proposed, which allows determining the optimal range of technological parameters for well drilling, reducing the extreme vibration accelerations of the bottomhole assembly by controlling the torque-power and frequency characteristics of the drilling string, taking into account the energy characteristics of the power screw section of the rotary steerable system. Recommendations on the choice of drilling mode parameters were given.

How to cite: Litvinenko V.S., Dvoinikov M.V. Justification of the technological parameters choice for well drilling by rotary steerable systems // Journal of Mining Institute. 2019. Vol. 235. p. 24-29. DOI: 10.31897/PMI.2019.1.24