-
Date submitted2021-11-10
-
Date accepted2022-05-25
-
Date published2022-12-29
Predicting the permeability of the near-bottomhole zone during wave impact
The research reveals that during selection of a method to increase oil recovery it is necessary to take into account rheological features of fluid movement through the formation, effect of capillary forces and heterogeneity of reservoir properties of the productive formation in thickness and along the bedding. Low-frequency wave impact, which is used to increase production in oil fields, is considered. At low-frequency impact new fractures appear and existing fractures in rocks increase in size. The greatest increase in porosity and permeability of rocks occurs at an impact frequency up to 10 Hz. Dynamics of oscillation amplitude during wave's movement in saturated porous medium is studied in the paper: essential attenuation of amplitude occurs at distance up to 1 m from borehole axis. With increase of frequency from 1 to 10 Hz the intensity of amplitude's attenuation decreases. The technology was tested on a well in Perm region (Russia). The actual permeability value was 50 % higher than the predicted value. According to the results of hydrodynamic investigations processing, it was noted that the greatest increase of permeability took place near the wellbore, while away from the wellbore axis permeability remained almost unchanged. In order to refine the mathematical model for prediction of wave impact on rock permeability it is necessary to take into account interconnection of pore space structure, change of adhesion layer, as well as to study transfer of particles during vibration.
-
Date submitted2018-09-07
-
Date accepted2018-11-10
-
Date published2019-02-22
Justification of the technological parameters choice for well drilling by rotary steerable systems
- Authors:
- Vladimir S. Litvinenko
- M. V. Dvoinikov
Paper presents the analysis of the investigation results of vibrational accelerations and beating amplitudes of the downhole drilling motor, which help to define the ranges of optimum energy characteristics of the gerotor mechanism, ensuring its stable operation. Dependencies describing the operation of the «drilling bit – rotary steerable system with power screw section – drilling string» system and the values of the self-oscillation boundaries and the onset of system resonance when it is used jointly, were defined as a result of computational and full-scale experimental research. A mathematical model is proposed, which allows determining the optimal range of technological parameters for well drilling, reducing the extreme vibration accelerations of the bottomhole assembly by controlling the torque-power and frequency characteristics of the drilling string, taking into account the energy characteristics of the power screw section of the rotary steerable system. Recommendations on the choice of drilling mode parameters were given.
-
Date submitted2018-07-18
-
Date accepted2018-08-25
-
Date published2018-12-21
Development of vibroacoustic module for fine filtration of drilling muds
- Authors:
- G. B. Fedorov
- O. L. Dudchenko
- D. S. Kurenkov
The issue of drilling mud multiple use is problematic. To reuse, the solution must be efficiently cleaned from solid particles according to the class of 0.04-0.07 mm. An analysis of existing technologies and equipment has shown that drilling mud regeneration schemes are rather difficult to operate and expensive. In world practice there has been a tendency to create universal equipment, which allows most complete cleaning cycle for a drilling mud in fine grades. The paper proposes an innovative vibroacoustic module for cleaning drilling muds from sludge. The creative element of the proposal is the impact of vibroacoustic oscillations on the drilling mud passing through the mesh element. At the same time, specific effects arise around the mesh, which increase the productivity and efficiency of the process. The design of the vibroacoustic apparatus and the principle of its operation are presented. An important element of the proposal is that the oscillation is created by pistons interconnected by rods and located on opposite sides of the mesh. This dipole system provides the excitation of variable pressures of different polarity before the mesh and after it. The results of industrial tests of the vibroacoustic module when servicing the BU-75-BrE drilling rig are presented. The dependence of the installation performance and efficiency on the amplitude of oscillations was found. The optimal dynamic range of exposure (from 5.5 to 6.5 mm) was determined. Analysis showed that in the composition of the cleaned drilling mud, the maximum particle size of the solid phase did not exceed 0.04 mm. The conducted industrial tests confirmed the possibility of using the vibroacoustic module for cleaning the washing fluid and developing a pit-free drilling technology on its basis.
-
Date submitted2015-08-24
-
Date accepted2015-10-16
-
Date published2016-04-22
Ways to ensure reliability, safety and efficiency of the costruction and installation works when buildings and structures erecting by stabilizing process of the rocking cargo suspension
- Authors:
- L. A. Goldobina
- P. S. Orlov
Nondestructive optical methods for measuring of the «thick» films thickness of the order of 0,001-1,00 mm are analyzed. It is shown that using the laser beam radiation and modern optical and electronic schemes possible to decrease the time of single measurement to 1ms and less at the measuring frequency of 10-50 hz. The possibility of measuring thickness and spreading coefficient and evaporation kinetics of liquid films is demonstrated. A new computer method of the data processing aimed to determine the film thickness from the angle dependence of the laser beam reflection coefficient by the film is offered. The offered procedure and the experimental technique realizing it permits to decrease the thickness determination uncertainty to the order of ten.