-
Date submitted2022-08-22
-
Date accepted2023-02-02
-
Date published2023-08-28
Wodginite as an indicator mineral of tantalum-bearing pegmatites and granites
- Authors:
- Viktor I. Alekseev
In the composition of tantalum-niobates, the tin-bearing wodginite group minerals (WGM) were found: wod-ginite, titanowodginite, ferrowodginite, ferrotitanowodginite, lithiowodginite, tantalowodginite, “wolframowodginite”. We reviewed the worldwide research on WGM and created a database of 698 analyses from 55 sources including the author's data. WGM are associated with Li-F pegmatites and Li-F granites. Wodginite is the most prevalent mineral, occurring in 86.6 % of pegmatites and 78.3 % of granites. The occurrence of WGM in granites and pegmatites differs. For instance, titanowodginite and “wolframowodginite” occur three times more frequently in granites than in pegmatites, whereas lithiowodginite and tantalowodginite do not appear in granites at all. The difference between WGM in granites and pegmatites is in finer grain size, higher content of Sn, Nb, Ti, W, and Sc; lower content of Fe 3+ , Ta, Zr, Hf; higher ratio of Mn/(Mn + Fe); and lower ratio of Zr/Hf. The evolutionary series of WGM in pegmatites are as follows: ferrowodginite → ferrotitanowodginite → titanowodginite → “wolframowodginite” → wodginite → tantalowodginite; in granites: ferrowodginite → ferrotitanowodginite → “wolframowodginite” → wodginite → titanowodginite. WGM can serve as indicators of tantalum-bearing pegmatites and granites. In Russia the promising sources of tantalum are deposits of the Far Eastern belt of Li-F granites containing wodginite.
-
Date submitted2018-08-30
-
Date accepted2018-11-06
-
Date published2019-02-22
Tourmaline as an ondicator of tin occurrences of cassiterite-quartz and cassiterite-silicate formations (a case study of the Verkhneurmiysky ore cluster, Far East)
- Authors:
- V. I. Alekseev
- Yu. B. Marin
The research focused on the composition of tourmaline from tin ore deposits and ore occurrences within the Verkhneurmiysky ore cluster in the Amur region. The aim of the study is to determine the indicative signs of tourmaline from cassiterite-quartz and cassiterite-silicate formations. This research is based on the materials of a long-term study of the mineralogy of the Far East deposits, conducted at the Mining University under the scientific supervision of Professor Yu.B.Marin. The relevance of the study involves predicting of tin and associated mineralization. For the first time, SIMS and Mössbauer spectroscopy were used to study tourmaline from this region. We identified the typomorphic characteristics of the tourmaline composition, which are proposed to be used as indicators of tin-ore deposits. Typomorphic characteristics of tourmaline from cassiterite-quartz formation: schorl (Mg/(Mg + Fe) = 0.06) with a high content of Al and K; Fe 3+ /(Fe 3+ + Fe 2+ ) = 0.03; Z Fe 3+ = 1 %; impurities: Nb, LREE (La, Ce, Pr), Be, Bi, F, Li, and Mn; LREE content > 9 ppm; positive Gd anomaly. Typomorphic characteristics of tourmaline from cassiterite-silicate formation: schorl-dravite (Mg/(Mg + Fe) = 0.22) with a high Ca content; Fe 3+ / (Fe 3+ + Fe 2+ ) = 0.17; Z Fe 3+ = 9 %; impurities: Zr, Y, Cr, V, Sn, In, Pb, W, Mo, Ti, HREE, Eu, Sr, Sb, and Sc; the content of Y is > 2 ppm, of HREE is > 3 ppm, Eu is > 0.1 ppm.