-
Date submitted2020-08-20
-
Date accepted2021-11-30
-
Date published2021-12-27
Indicator role of rare and rare-earth elements of the Northwest manganese ore occurrence (South Africa) in the genetic model of supergene manganese deposits
- Authors:
- Aleksandr N. Evdokimov
- Benedict L. Pharoe
The authors analyzed the content of a number of rare and rare-earth elements in the rocks of the Northwest manganese ore occurrence, confined to the Neoarchean dolomites of the Malmani series of the Transvaal Basin. 30 samples of manganese ores and host rocks were analyzed by ICP-MS and XRF methods. Average values of Post-Archean Australian Shale (PAAS) were used as the geochemical standard for data calculation and normalization. The concentrations of elements normalized on PAAS reveal the LREE anomaly in manganese ores. Positive Ce and negative Y–anomalies indicate the hydro-genetical type of sedimentation of ore minerals from manganese-bearing aqueous solutions. This is consistent with the ratios of the elements: Ce and Y SN /Ho SN , Ce and Nd, Fe – Mn – (Co + Ni + Cu) × 10. A clear correlation between the contents of rare-earth elements in manganese nodules and the underlying Malmani dolomites indicates their close genetic relationship. Negative Ce and positive Y–anomalies in manganese wad minerals indicate differences in the conditions of their formation. The manganese wad formed earlier than the rest of the ore with the active participation of microorganisms.
-
Date submitted2019-06-02
-
Date accepted2019-09-02
-
Date published2020-04-24
Sorption of nickel (II) and manganese (II) ions from aqueous solutions
Mine water from non-ferrous metal deposits is often contaminated with nickel and manganese ions. The entry of these ions, especially nickel, into surface waters and underground aquifers is undesirable since it has a negative effect on living organisms and worsens the condition of drinking water sources. One of the promising methods for selectively extracting nickel ions and obtaining an eluate suitable for further use is sorption by weakly acid cation exchangers with chelate groups of iminodiacetic acid. As part of the study, sorption isotherms of nickel and manganese ions by Lewatit MonoPlus TP 207 cation exchanger in mono- and bicomponent systems were obtained. In monocomponent systems, the maximum static exchange capacity (SEC) of the cation exchanger for nickel ions is 952 mmol/dm 3 , and in bicomponent systems – 741 mmol/dm 3 ; for manganese ions– 71 mmol/dm 3 and 49 mmol/dm 3 , respectively. It is obvious that the studied cation exchanger has a greater capacity for nickel ions than for manganese ions. The influence of a temperature increase from 300 to 330 K on the sorption of nickel and manganese ions was established: in monocomponent systems, the maximum degree of extraction of the former increases from 65 to 77 % (SEC from 337 to 399 mmol/dm 3 ), and the latter from 21 to 35 % (SEC – from 140 to 229 mmol/dm 3 ); in bicomponent systems, the extraction of nickel ions increases from 59 to 78 % (SEC – from 307 to 429 mmol/dm 3 ), and manganese ions decreases from 20 to 17 % (SEC – from 164 to 131 mmol/dm 3 ). The predominant increase in the indicators is due to the filling of the sorption centers of the ion-exchange resins, which are energetically unfavorable for the exchange of counterions at a lower temperature. The influence of the pH of the solution on sorption was determined: the intensification of the process for nickel ions is observed in the pH range of 8.0-8.5 in a monocomponent solution and 8.0-9.0 in a bicomponent solution, for manganese ions in the range of 8.0-9.5 in both cases. The increase in the degree of extraction of ions and the exchange capacity of the ion exchanger with increasing pH is associated with the appearance of singly charged hydroxocations, dissociation of the functional groups of the sorbent and, to some extent, with the subsequent formation of insoluble forms of nickel and manganese. However, with increasing pH, a decrease in the selectivity of nickel extraction is observed: the ion separation coefficient decreases from 14.0 to 6.0 in the pH range of 6.0-11.0.
-
Date submitted2015-07-27
-
Date accepted2015-09-17
-
Date published2016-02-24
Electroextraction of cobalt from sulfate-chloride and sulfate solutions of cobalt and manganese in static conditions
- Authors:
- L. P. Khomenko
- L. A. Voropanova
The dependence of the results of electroextraction cobalt and manganese from aqueous solutions of their sulphate and chloride-sulfate solutions under static conditions was investigated. According to the results of current efficiency and specific energy consumption it has been found that the electrowinning of cobalt from aqueous solutions of cobalt and manganese in static conditions using a titanium cathode should be carried out at low concentration of manganese from sulphate-chloride solution without partitions and from sulphate solutions both without and with the perforated partitions separating the electrolytic cell into cathode and anode space.
-
Date submitted2013-07-08
-
Date accepted2013-09-28
-
Date published2014-03-17
Research of technogenic migration of manganese in water objects of the Kovdor area
- Authors:
- V. A. Petrova
- M. A. Pashkevich
Researches of a condition of reservoirs of the Kovdor area showed that one of actual problems is pollution of a surface water by compounds of manganese. In this regard in work questions of a manganese origin in water objects and features of behavior of this element depending on changing conditions of the environment are considered.