The isolation of landslide-prone territory using the neural network method
Authors:
About authors
- National Mineral Resources University (Mining University)
Abstract
The method neural networks of back propagation is discussed in this paper. Parameters of the original data for zoning and structure of the neural network are defined. It shows the results and assessments of accuracy landslide areas identification within Krasnaya Polyana. Proposal on the use of digital elevation models produced with high-precision geodetic techniques to improve the reliability of the simulation results is made.
References
- Рассел С. Искусственный интеллект: современный подход / С.Рассел, П.Норвиг. М.: ООО «И.Д.Вильямс», 2006. 1424 с.
- Хайкин С. Нейронные сети: полный курс: Пер. с англ. М.: ООО «И.Д.Вильямс», 2006. 1104 с.
- Pradhan B. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling / B.Pradhan, S.Lee. // Environmental Modelling & Software, 2010. Р.747-759.
Similar articles
Ultrasonic study of creep in polycrystalline rocks
2013 V. M. Tsaplev, R. M. Ivanyuk, V. V. Zverevich
Analysis of the effect of assembly errors on deviations from design arch sizes
2013 V. A. Kougiya, O. P. Sergeev
Assessment of stress-strain conditions around single development with nonlinear rock-mass deformation
2013 A. G. Protosenya, V. I. Semenov