Submit an Article
Become a reviewer
Vol 204
Pages:
46
Download volume:
RUS

The isolation of landslide-prone territory using the neural network method

Authors:
A. A. Kuzin
About authors
  • National Mineral Resources University (Mining University)
Date submitted:
2012-11-30
Date accepted:
2013-01-09
Date published:
2013-11-18

Abstract

The method neural networks of back propagation is discussed in this paper. Parameters of the original data for zoning and structure of the neural network are defined. It shows the results  and assessments of accuracy landslide areas identification within Krasnaya Polyana. Proposal on the use of digital elevation models produced with high-precision geodetic techniques to improve the reliability of the simulation results is made.

Go to volume 204

References

  1. Рассел С. Искусственный интеллект: современный подход / С.Рассел, П.Норвиг. М.: ООО «И.Д.Вильямс», 2006. 1424 с.
  2. Хайкин С. Нейронные сети: полный курс: Пер. с англ. М.: ООО «И.Д.Вильямс», 2006. 1104 с.
  3. Pradhan B. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling / B.Pradhan, S.Lee. // Environmental Modelling & Software, 2010. Р.747-759.

Similar articles

Ultrasonic study of creep in polycrystalline rocks
2013 V. M. Tsaplev, R. M. Ivanyuk, V. V. Zverevich
Analysis of the effect of assembly errors on deviations from design arch sizes
2013 V. A. Kougiya, O. P. Sergeev
Determination of strength characteristics of concrete with polymer fibro
2013 D. N. Petrov
Assessment of stress-strain conditions around single development with nonlinear rock-mass deformation
2013 A. G. Protosenya, V. I. Semenov
Estimation of quality of environment with the use of small pilotless aircrafts
2013 M. A. Pashkevich, Yu. D. Smirnov, A. S. Danilov
Characteristics of the strain-stress distribution of the quarry face with different curve
2013 M. G. Mustafin, A. V. Panchenko