Submit an Article
Become a reviewer
Vol 210
Pages:
78
Download volume:

Separation and extraction of lanthanides from low concentrations of raw materials using extraction methods

Authors:
T. E. Litvinova1
O. V. Cheremisina2
About authors
  • 1 — National Mineral Resources University (Mining University)
  • 2 — National Mineral Resources University (Mining University)
Date submitted:
2014-07-13
Date accepted:
2014-09-13
Date published:
2014-12-22

Abstract

At the present time, the unique physical and chemical properties of rare earth metals (REM) mean they can find wide application in the metallurgy, mechanical engineering, avionics, petrochemical, laser and glass industries. In metallurgy, rare earth metals using for production of special grades of steel and cast iron. Adding REM can improve their mechanical properties: hardness, toughness, resistance to corrosion. REM are also used for the deoxidation of metals and alloys. The REM production technology from loparite concentrate that already exists in Russia is not enough for the metal-lurgical, oil, glass, ceramic, nuclear and military industries (just 2 % of the world’s REM are produced in Russia). REM for these industrial proposes is purchased in China, which is recog-nized as having a monopoly on the production of rare metals (96% of REM produced world-wide). If we want to supply these needs in future, we will have to produce 10 tons per year of REM, which requires processing all available resources: mono- and polymineral raw materials. One of the most acceptable source of rare earth metals and some rare metals (zirconium, niobium, hafnium) is eudialyte. The world’s biggest deposits of eudialyte are found on the Kola Peninsula in northwest Russia, near the Lovozero mining and processing plant. Eudialyte concentrate is easily decomposed by acids, which explains its layered structure and weak chemical bonds between its constituent groups. The easy leaching process is the main reason that it is processed. In our work the technological possibility of extraction and separation of lanthanides has been shown, using solutions of naphthenic and oleic acid in an inert diluent with a stoichiometric reagent consumption, without the preoxidation step of the cerium to the tetravalent state. The technological parameters and stages of the process have been established.

Go to volume 210

References

  1. Недра России: В 2 т. Полезные ископаемые. Т.1 / А.А.Смыслов, Н.В.Межеловский, А.Ф.Морозов, Е.А.Басков, А.И.Бурдэ, К.Б.Ильин, А.В.Козлов, Л.В.Кулачков, В.С.Литвиненко, Ю.В.Лир, Д.В.Рундквист, И.Г.Савина, С.В.Сендек, Л.И.Тихомиров, М.Г.Харламов / Под ред. Н.В.Межеловского, А.А.Смыслова; Санкт-Петербургский горный институт. СПб-М., 2001. 547 с.
  2. Разделение лантана, церия и неодима при экстракции олеиновой кислотой / Д.Э.Чиркст, Д.С.Луцкий, В.А.Луцкая, С.В.Хрускин, Т.Е.Литвинова // Высокие технологии, фундаментальные исследования, экономика. 2011. Т.1. С.308-312.
  3. Разделение самария, европия и эрбия нафтеновой кислотой при стехиометрическом расходе экстрагента / Д.Э.Чиркст, Д.С.Луцкий, В.А.Луцкая, С.В.Жуков, Т.Е.Литвинова // Там же. 2011. Т.1. С.305-308.
  4. Редкие и рассеянные элементы. Химия и технология. В 3 кн. Кн.1. / Под ред. С.С.Коровина; МИСИС. М., 1996. 376 с.
  5. Singh D.K., Singh H., Mathur J.N. Extraction of rare earths and yttrium with high molecular weight carboxylic acids // Hydrometallurgy. Vol.81. 2006. P.174-181.
  6. Chirkst D.E., Lutskii D.S., Litovchenko V.A., Litvinova T.E. The separation of cerium (III) and yttrium (III) at solvent extraction by carboxylic acids as stage of mining and metallurgical integrated works wastes treatment. Freiberger Forschungshefte, 2008. P.164-169.
  7. Chirkst D.E., Lutskii D.S., Lutskaia V.A., Litvinova T.E. The separation of cerium (III), yttrium (III), erbium (III), samarium (III) at solvent extraction by carboxylic acids. Freiberger Forschungshefte. 2010. P.388-393.

Similar articles

Mathematical modeling of the impact of blast waves on underground pipelines
2014 A. P. Gospodarikov, G. A. Kolton, E. L. Buldakov
Theoretical aspects of the kinetics of gas hydrates
2014 E. P. Zaporozhets, N. A. Shostak
The development of ideas for improving explosive destruction of rock masses – the basis of progress in mining
2014 S. D. Viktorov, V. M. Zakalinskii
Mathematical modeling of mine air conditioning in the zone of mine works
2014 A. A. Lapshin
The study of structural features of outburst coal seams
2014 V. N. Zakharov, O. N. Malinnikova
Informational support for prompt project management of microfault exploration
2014 V. V. Nazimko