Submit an Article
Become a reviewer
Vol 219
Pages:
382-386
Download volume:
RUS
Article

Nonlinear math model development and numerical model of strain deformed rock mass conditions prognosis

Authors:
A. P. Gospodarikov
About authors
  • Ph.D., Dr.Sci. professor Saint-Petersburg Mining University
Date submitted:
2015-09-19
Date accepted:
2015-11-29
Date published:
2016-06-22

Abstract

The article deals with the questions related to the development of math models of nonlinear strain deformed conditions of a laminar heterogeneous rock mass in the area of excavation in shallow formations. The non-linear relations between physical strains and deformations are added to the basic system of resolving differential equations in partial derivatives (equilibrium equations) and well-known Cauchy dependencies (formulas of connection between deformations and displacements). This ratio is defined by both the elastic potential and by exponential law of hardening or by linear hardening law. Within the framework of the accepted hypotheses of Genki – Ilyushin theory of small elastoplastic deformations some algorithms and calculating complexes of solutions of applied geomechanics problems have been developed. They include such numerical methods as finite difference method, finite element method, and boundary element method. Nonlinear boundary problem based on Newton – Kantorovich – Raphson linearization method comes to the iterative process of a linear boundary problems sequence solution.

Область исследования:
Mining
Keywords:
heterogeneous rock mass excavation nonlinear deformation of rocks Genki – Ilyushin theory of small elastoplastic deformations Newton – Kantorovich – Raphson linearization method general iterative process numerical methods and calculating complexes
10.18454/pmi.2016.3.382
Go to volume 219

References

  1. Baklashov I.V. Geomekhanika (Geomechanics). In 2 vol. Moscow: Izd-vo MGGU, 2004.
  2. Bellman R., Kalaba R. Kvazilinearizatsiya i nelineynye kraevye zadachi (Quasilinearization and nonlinear boundary-value problems). Moscow: Mir, 1968, p.184.
  3. Genki G. K teorii plasticheskikh deformatsiy i vyzyvaemykh imi v materiale ostatochnykh napryazheniy (About the theory of plastic deformations and residual strains caused by these deformations in material). Teoriya plastichnosti (Theory of plasticity). Moscow, Izd-vo inostrannoi literatury. 1948, p.114-135.
  4. Gospodarikov A.P. Metod rascheta nelineynykh zadach mekhaniki gornykh porod pri podzemnoy razrabotke plastovykh mestorozhdeniy (Computing method of nonlinear problems of rock mechanics in underground mining). SPGGI. St. Petersburg. 1999, p.127.
  5. Gospodarikov A.P., Bespalov L.A. Primenenie pryamogo varianta metoda granichnykh elementov pri reshenii geomekhanicheskikh zadach dlya usloviy Starobinskogo mestorozhdeniya (Application of a direct boundary element method for solving geomechanical problems in Starobin deposit). Zapiski Gornogo instituta. 2008. Vol.182, p.234-237.
  6. Gospodarikov A.P., Zatsepin M.A., Meleshko A.V. Ob odnom algoritme chislennogo resheniya nelineinykh kraevykh zadach geomekhaniki (Numerical solution of nonlinear boundary-value problems of geomechanics). Zapiski Gornogo instituta. 2012. Vol.196, p.306-310.
  7. Gospodarikov A.P., Zatsepin M.A. Matematicheskoe modelirovanie prikladnykh zadach mekhaniki gornykh porod i massivov (Mathematical modeling of applied problems of rock mechanics). Zapiski Gornogo instituta. 2014. Vol.211, p.217-221.
  8. Gospodarikov A.P., Maksimenko M.V., Sidorenko A.A. Vychislitel'nyy kompleks dlya rascheta prognoziruemykh smeshcheniy kontura protyazhennoy gornoy vyrabotki (Computing system for calculation of predictable displacements of the lengthy excavation contour). Gornyy informatsionno-analiticheskiy byulleten'. 2016. N 5, p.36-42.
  9. Zenkevich O. Metod konechnykh elementov v tekhnike (The finite element method in engineering) Moscow: Mir, 1975, p.541.
  10. Il'yushin A.A. Plastichnost' (Plasticity). Moscow: Gostekhizdat, 1948, p.376.
  11. Kantorovich L.V., Krylov V.I. Priblizhennye metody vysshego analiza (Approximate methods of higher analysis). Moscow: Fizmatgiz, 1962, p.708.
  12. Krauch S., Starfild A. Metody granichnykh elementov v mekhanike tverdogo tela (Boundary element methods in solid mechanics). Moscow: Mir, 1987, p.328.
  13. Novozhilov V.V. Osnovy nelineynoy teorii uprugosti (Fundamentals of nonlinear theory of elasticity). Leningrad: Gostekhizdat, 1948. p.211.
  14. Krasnosel'skiy M.A., Vaynikko G.M., Zabreyko P.P., Rutitskiy Ya.B., Stetsenko V.Ya. Priblizhennoe reshenie operatornykh uravneniy (Approximate solution of operator equations). Moscow: Nauka, 1969, p.456.
  15. Richtmyer R.D., Morton K.W. Raznostnye metody resheniya kraevykh zadach (Difference methods for solving boundaryvalue problems). Moscow: Mir, 1972, p.418.
  16. Stavrogin A.N., Protosenya A.G. Mekhanika deformirovaniya i razrusheniya gornykh porod (Mechanics of rock deformation and failure). Moscow: Nedra, 1992, р.222.

Similar articles

Influence of inelastic collisions on fast electron beam energy relaxation in gas
2016 V. S. Sukhomlinov, A. S. Mustafaev
Theme of cyanide neutralization during environment measures implementing in case of native gold finely disseminated ex-traction from bedrocks
2016 I. V. Fedoseev, M. Sh. Barkan
Culturological elements of edutainment employed in basic cultural formation of non-humanities students
2016 S. A. Rassadina
Scientific basis of processing aluminum-containing waste
2016 A. I. Alekseev
Analysis of the corrosion destruction causes in underground pipelines and new solutions for increasing corrosion steel's resistance
2016 L. A. Goldobina, P. S. Orlov
Modern method for gas production
2016 I. V. Ivanova, V. M. Shaber