Исследование возможности использования воды с высокой минерализацией для гидравлического разрыва пласта
- 1 — д-р техн. наук профессор Уфимский государственный нефтяной технический университет ▪ Orcid ▪ Elibrary ▪ Scopus
- 2 — д-р геол.-минерал. наук директор Институт нефти и газа ФГБОУ ВО «Уфимский государственный нефтяной технический университет» в г. Октябрьском ▪ Orcid
- 3 — руководитель направления ООО «Газпромнефть НТЦ» ▪ Orcid
- 4 — канд. техн. наук заместитель заведующего лабораторией НИПИ «Нефтегаз», SOCAR ▪ Orcid
- 5 — руководитель центра ООО «Газпромнефть НТЦ» ▪ Orcid
Аннотация
Представлены результаты лабораторных исследований для разработки жидкости гидравлического разрыва пласта на основе альтернативных источников воды с высокой минерализацией. Показано, что сеноманские источники обладают наиболее стабильными параметрами минерализации, тогда как подтоварные и смесевые воды, отобранные из магистралей систем поддержания пластового давления, существенно различаются по свойствам, причем количество железа может изменяться в несколько раз, а жесткость и минерализация претерпевают существенные изменения. Качество рассмотренных жидкостей гидравлического разрыва пласта на основе альтернативных источников воды подтверждается их влиянием на остаточную проницаемость пласта, а также остаточную проводимость и проницаемость проппантной пачки. Приведенные результаты экспериментов показывают близкие значения этих параметров. Выполненный комплекс лабораторных исследований подтверждает перспективу промышленного применения воды с высоким уровнем минерализации для производства гидравлического разрыва пласта.
Литература
- Конторович А.Э., Бурштейн Л.М., Лившиц В.Р., Рыжкова С.В. Главные направления развития нефтяного комплекса России в первой половине XXI века // Вестник РАН. 2019. Т. 89. № 11. С. 1095-1104. DOI: 10.31857/S0869-587389111095-1104
- Дмитриевский А.Н. Ресурсно-инновационная стратегия развития экономики России // Нефтяное хозяйство. 2017. № 5. С. 6-7.
- Муслимов Р.Х. Новая стратегия освоения нефтяных месторождений в современной России – оптимизация добычи и максимизация КИН // Нефть. Газ. Новации. 2016. № 4 (187). С. 8-17.
- Мухаметшин В.Ш., Хакимзянов И.Н., Бахтизин Р.Н., Кулешова Л.С. Дифференциация и группирование сложнопостроенных залежей нефти в карбонатных коллекторах в решении задач управления разработкой // SOCAR Proceedings. 2021. Спец. вып. 1. С. 88-97. DOI: 10.5510/OGP2021SI100513
- Мухаметшин В.В., Бахтизин Р.Н., Кулешова Л.С. и др. Скрининг и оценка условий эффективного применения методов увеличения нефтеотдачи высокообводненных залежей с трудноизвлекаемыми запасами // SOCAR Proceedings. 2021. Спец. вып. 2. С. 48-56. DOI: 10.5510/OGP2021SI200588
- Yang S., Siddhamshetty P., Kwon J. S.-I. Optimal pumping schedule design to achieve a uniform proppant concentration level in hydraulic fracturing // Computers & Chemical Engineering. 2017. Vol. 101. P. 138-147. DOI: 10.1016/j.compchemeng.2017.02.035
- Грищенко В.А., Рабаев Р.У., Асылгареев И.Н. и др. Методический подход к определению оптимальных геолого-технологических характеристик при планировании ГРП на многопластовых объектах // SOCAR Proceedings. 2021. Спец. вып. 2. С. 182-191. DOI: 10.5510/OGP2021SI200587
- Грищенко В.А., Позднякова Т.В., Мухамадиев Б.М. и др. Повышение эффективности разработки залежей нефти в карбонатных коллекторах на примере турнейского яруса // SOCAR Proceedings. 2021. Спец. вып. 2. С. 238-247. DOI: 10.5510/OGP2021SI200603
- Wijaya N., Sheng J.J. Comparative study of well soaking timing (pre vs. post flowback) for water blockage removal from matrix-fracture interface // Petroleum. 2020. Vol. 6. Iss. 3. P. 286-292. DOI: 10.1016/j.petlm.2019.11.001
- Мухаметшин В.В. Устранение неопределенностей при решении задач воздействия на призабойную зону скважин // Известия Томского политехнического университета. Инжиниринг георесурсов. 2017. Т. 328. № 7. С. 40-50.
- Хисамиев Т.Р., Баширов И.Р., Мухаметшин В.Ш. и др. Результаты оптимизации системы разработки и повышения эффективности выработки запасов карбонатных отложений турнейского яруса Четырманского месторождения // SOCAR Proceedings. 2021. Спец. вып. 2. С. 131-142. DOI: 10.5510/OGP2021SI200598
- Jiaxiang Xu, Yunhong Ding, Lifeng Yang et al. Effect of proppant deformation and embedment on fracture conductivity after fracturing fluid loss // Journal of Natural Gas Science and Engineering. 2019. Vol. 71. № 102986. DOI: 10.1016/j.jngse.2019.102986
- Галкин В.И., Колтырин А.Н. Исследование вероятностных моделей для прогнозирования эффективности технологии пропантного гидравлического разрыва пласта // Записки Горного института. 2020. Т. 246. С. 650-659. DOI: 10.31897/PMI.2020.6.7
- Якупов Р.Ф., Мухаметшин В.Ш., Хакимзянов И.Н., Трофимов В.Е. Оптимизация выработки запасов из водонефтяных зон горизонта D3ps Шкаповского нефтяного месторождения с помощью горизонтальных скважин // Георесурсы. 2019. Т. 21. № 3. С. 55-61. DOI: 10.18599/grs.2019.3.55-61
- Fokker P.A., Borello E.S., Verga F., Viberti D. Harmonic pulse testing for well performance monitoring // Journal of Petroleum Science and Engineering. 2018. Vol. 162. P. 446-459. DOI: 10.1016/j.petrol.2017.12.053
- Грищенко В.А., Гареев Р.Р., Циклис И.М. и др. Расширение круга льготируемых объектов, содержащих трудноизвлекаемые запасы нефти // SOCAR Proceedings. 2021. Спец. вып. 2. С. 8-17. DOI: 10.5510/OGP2021SI200575
- Cheng Jing, Xiaowei Dong, Wenhao Cui et al. Artificial neural network-based time-domain interwell tracer testing for ultralow-permeability fractured reservoirs // Journal of Petroleum Science and Engineering. 2020. Vol. 195. № 107558. DOI: 10.1016/j.petrol.2020.107558
- Yakupov R.F., Mukhametshin V.S., Tyncherov K.T. Filtration model of oil coning in a bottom water-drive reservoir // Periódico Tchê Química. 2018. Vol. 15. Iss. 30. P. 725-733. DOI: 10.52571/PTQ.v15.n30.2018.725_Periodico30_pgs_725_733.pdf
- Фаттахов И.Г., Кулешова Л.С., Бахтизин Р.Н. и др. Комплексирование результатов моделирования ГРП при проведении гибридных кислотно-пропантных обработок и при одновременной инициации трещины ГРП в разделенных интервалах // SOCAR Proceedings. 2021. Спец. вып. 2. С. 103-111. DOI: 10.5510/OGP2021SI200577
- Кулешова Л.С., Фаттахов И.Г., Султанов Ш.Х. и др. Опыт проведения многозонного кислотного ГРП на месторождении ПАО «Татнефть» // SOCAR Proceedings. 2021. Спец. вып. 1. С. 68-76. DOI: 10.5510/OGP2021SI100511
- Keshavarz A., Yulong Yang, Badalyan A. et al. Laboratory-based mathematical modelling of graded proppant injection in CBM reservoirs // International Journal of Coal Geology. 2014. Vol. 136. P. 1-16. DOI: 10.1016/j.coal.2014.10.005
- Грищенко В.А., Асылгареев И.Н., Бахтизин Р.Н. и др. Методический подход к мониторингу эффективности использования ресурсной базы при разработке нефтяных месторождений // SOCAR Proceedings. 2021. Спец. вып. 2. С. 229-237. DOI: 10.5510/OGP2021SI200604
- Мухаметшин В.В. Повышение эффективности управления разработкой залежей Западно-Сибирской нефтегазоносной провинции на основе дифференциации и группирования // Геология и геофизика. 2021. Т. 62. № 12. С. 1672-1685. DOI: 10.15372/GiG2021102
- Нургалиев Р.З., Козихин Р.А., Фаттахов И.Г., Кулешова Л.С. Перспективы применения новых технологий при оценке влияния геолого-технологических рисков // Горный журнал. 2019. № 4. С. 36-40. DOI: 10.17580/gzh.2019.04.08
- Temizel C., Canbaz C.H., Palabiyik Y. et al. A Review of Hydraulic Fracturing and Latest Developments in Unconventional Reservoirs / Offshore Technology Conference, 2-5 May 2022, Houston, TX, USA. OnePetro, 2022. № OTC-31942-MS. DOI: 10.4043/31942-MS
- Linsong Cheng, Deqiang Wang, Renyi Cao, Rufeng Xia. The influence of hydraulic fractures on oil recovery by water flooding processes in tight oil reservoirs: An experimental and numerical approach // Journal of Petroleum Science and Engineering. 2020. Vol. 185. № 106572. DOI: 10.1016/j.petrol.2019.106572
- Хузин Р.Р., Андреев В.Е., Мухаметшин В.В. и др. Влияние гидравлического сжатия пласта на фильтрационно-емкостные свойства пластов-коллекторов // Записки Горного института. 2021. Т. 251. С. 688-697. DOI: 10.31897/PMI.2021.5.8
- Нешич С., Стрелецкая В.В. Интегрированный подход при обращении и обратной закачке попутно добываемой воды // Георесурсы. 2018. Т. 20. № 1. С. 25-31. DOI: 10.18599/grs.2018.1.25-31
- Конторович А.Э., Варламов А.И., Ефимов А.С. и др. Стратиграфическая схема кембрийских отложений юга Предъенисейской части Западной Сибири // Геология и геофизика. 2021. Т. 62. № 3. С. 443-465. DOI: 10.15372/GiG2020206
- Стабинскас А.П., Султанов Ш.Х., Мухаметшин В.Ш. и др. Эволюция жидкости гидроразрыва пласта: от гуаровых систем к синтетическим геллирующим полимерам // SOCAR Proceedings. 2021. Спец. вып. 2. С. 172-181. DOI: 10.5510/OGP2021SI200599
- Сергеев В.В., Шарапов Р.Р., Кудымов А.Ю. и др. Экспериментальное исследование влияния коллоидных систем с наночастицами на фильтрационные характеристики трещин гидравлического разрыва пласта // Нанотехнологии в строительстве. 2020. Т. 12. № 2. С. 100-107. DOI: 10.15828/2075-8545-2020-12-2-100-107
- Стабинскас А.П. Оценка эффективности работы скважин после проведения гидравлического разрыва пласта // Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов. 2014. № 1 (95). С. 10-20.
- Chenguang Zhang, Xiting Long, Xiangwei Tang et al. Implementation of water treatment processes to optimize the water saving in chemically enhanced oil recovery and hydraulic fracturing methods // Energy Reports. 2021. Vol. 7. P. 1720-1727. DOI: 10.1016/j.egyr.2021.03.027
- Захаров Л.А., Мартюшев Д.А., Пономарева И.Н. Прогнозирование динамического пластового давления методами искусственного интеллекта // Записки Горного института. 2022. Т. 253. С. 23-32. DOI: 10.31897/PMI.2022.11
- Кривощеков С.Н., Кочнев А.А., Равелев К.А. Разработка алгоритма определения технологических параметров нагнетания кислотного состава при обработке призабойной зоны пласта с учетом экономической эффективности // Записки Горного института. 2021. Т. 250. С. 587-595. DOI: 10.31897/PMI.2021.4.12
- Хузин Р.Р., Андреев В.Е., Мухаметшин В.В. и др. Влияние гидравлического сжатия пласта на фильтрационно-емкостные свойства пластов-коллекторов // Записки Горного института. 2021. Т. 251. С. 688-697. DOI: 10.31897/PMI.2021.5.8
- Siddhamshetty P., Mao S., Wu K., Kwon J.S.-I. Multi-Size Proppant Pumping Schedule of Hydraulic Fracturing: Application to a MP-PIC Model of Unconventional Reservoir for Enhanced Gas Production // Processes. 2020. Vol. 8. Iss. 5. № 570. DOI: 10.3390/pr8050570
- Veil J.A., Clark C. Produced Water Volume Estimates and Management Practices // SPE Production & Operations. 2011. Vol. 26. Iss. 3. P. 234-239. DOI: 10.2118/125999-PA
- Sun Huning, Xie Xuan, Gao Guanghui et al. Patent № CN 10275778 B. Fracturing fluid capable of resisting high salinity water quality. Publ. 14.08.2012.
- Рогачев М.К., Мухаметшин В.В., Кулешова Л.С. Повышение эффективности использования ресурсной базы жидких углеводородов в юрских отложениях Западной Сибири // Записки Горного института. 2019. Т. 240. С. 711-715. DOI: 10.31897/PMI.2019.6.711
- Шляпкин А.С., Татосов А.В. Формирование трещины гидроразрыва пласта высоковязким гелем // Геология, геофизика и разработка нефтяных и газовых месторождений. 2020. № 9 (345). С. 109-112. DOI: 10.30713/2413-5011-2020-9(345)-109-112
- Kakadjian S., Thompson J., Torres R. Fracturing Fluids from Produced Water / SPE Production and Operations Symposium, 1-5 March 2015, Oklahoma City, OK, USA. OnePetro, 2015. № SPE-173602-MS.
- Wang Shi Ben, Guo Jian Chun, Lai Ji et al. Patent № CN 103497753 B. One is applicable to the of the fracturing fluid linking agent of concentrated water. Publ. 30.09.2013.
- Siddhamshetty P., Seeyub Yang, Kwon J.S.-I. Modeling of hydraulic fracturing and designing of online pumping schedules to achieve uniform proppant concentration in conventional oil reservoirs // Computers & Chemical Engineering. 2018. Vol. 114. P. 306-317. DOI: 10.1016/j.compchemeng.2017.10.032