Submit an Article
Become a reviewer
Vol 4 No 1
Pages:
47-53
Download volume:
RUS
Research article
Articles

About the Laplace series

Authors:
N. M. Krylov
Date submitted:
1911-07-11
Date accepted:
1911-09-02
Date published:
1912-01-01

Abstract

The solution to one of the main problems of mathematical physics, namely the Dirichlet problem for a sphere, is reduced, as is known, to the question of expanding the so-called “arbitrary” function of two angles into a series arranged according to the spherical Laplace functions. The possibility of expansion for a function that has two first derivatives has been proven and reasoning similar to that given in our article: “On the theory of trigonometric series”. It is possible to establish the possibility of expansion for a function that satisfies Lipchitz’s condition.

Go to volume 4

References

  1. -

Similar articles

List of works by Professor I. P. Dolbnya in chronological order of their appearance
1912 Volume 4(1)
Deriving formulas for calculating the faces of the original belt using the zonal calculation system
1912 E. S. Fedorov
In memory of I. P. Dolbnya
1912 Volume 4(1)
Deposits of copper and lead ores in the foothills of Mogol-tau and Kara-Mazar in Turkestan
1912 V. N. Tomilin
Speech given on April 8, 1912 at a meeting of the Council of the Mining Institute of Empress Catherine II
1912 A. V. Vasil'ev
Rocks from the Dashkesan deposit
1912 S. A. Doktorovich-Grebnitskii