Повышение качества электроэнергии в системах электроснабжения минерально-сырьевого комплекса гибридными фильтрокомпенсирующими устройствами
- 1 — канд. техн. наук доцент Санкт-Петербургский горный университет ▪ Orcid ▪ Elibrary ▪ Scopus ▪ ResearcherID
- 2 — аспирант Санкт-Петербургский горный университет ▪ Orcid
Аннотация
Показана актуальность и необходимость выбора и обоснования структур гибридных фильтрокомпенсирующих устройств на основе последовательных и параллельных активных фильтров для повышения качества электроэнергии в системах электроснабжения предприятий минерально-сырьевого комплекса. Разработаны математические модели гибридных фильтрокомпенсирующих устройств на основе параллельного и последовательного активных фильтров. На основе данных математических моделей разработаны компьютерные имитационные модели указанных гибридных структур. Результаты имитационного моделирования показали эффективность коррекции показателей качества электроэнергии в части снижения уровня высших гармоник тока и напряжения, а также отклонений напряжения. Выявлены степени влияния фильтрокомпенсирующих устройств на показатели качества электроэнергии, определяющие непрерывность и устойчивость технологического процесса на предприятиях минерально-сырьевого комплекса. Установлено, что гибридное фильтрокомпенсирующее устройство на базе параллельного активного фильтра позволяет снизить уровень высших гармоник тока и напряжения более чем на 90 и 70 % соответственно, а на основе последовательного активного фильтра – снизить уровень высших гармоник напряжения более чем на 80 %. По результатам моделирования выявлена возможность компенсации реактивной мощности гибридной структуры на основе параллельного активного и пассивных фильтров. Обоснована возможность интеграции гибридных фильтрокомпенсирующих устройств в более сложные многофункциональные электротехнические комплексы автоматизированного повышения качества электроэнергии, а также целесообразность и перспективность их использования в системах комбинированного электроснабжения на основе параллельной работы централизованных и автономных источников распределенной генерации.
Введение. Современные электротехнические комплексы промышленных предприятий минерально-сырьевого комплекса характеризуются интенсивным распространением нелинейной нагрузки в виде систем частотно-регулируемого электропривода технологических установок. Это негативно влияет на уровень качества электроэнергии в части несинусоидальности напряжения и тока [3]. Величины показателей качества электроэнергии определяют уровень эффективности и надежности работы сетей и систем электроснабжения предприятий минерально-сырьевого комплекса (МСК), а также отдельных видов электрооборудования.
Постановка проблемы. Проблема обеспечения качества электроэнергии и электромагнитной совместимости электрооборудования является актуальной для предприятий МСК. Уровень качества электроэнергии оказывает непосредственное влияние на срок службы основного электрооборудования, устойчивость функционирования электроустановок, величину дополнительных потерь энергии в эле-ментах систем электроснабжения, вибрации в электродвигателях. В частности, по результатам исследований [5, 7] установлено, что величина дополнительных потерь энергии в электрических машинах, обусловленных наличием высших гармоник тока и напряжения, могут достигать 25 % от уровня суммарных потерь. Также выявлено [8, 12], что при наличии гармонических искажений в сети, превышающих нормы ГОСТ 32144-2013, срок службы асинхронных двигателей может снизиться в 1,5-2 раза, конденсаторных установок компенсации реактивной мощности – в пять и более раз. Для погружных асинхронных электродвигателей технологических установок нефтедобычи при уровне снижения напряжения более чем на 70 % от номинальной величины критическая длительность провала напряжения по условию устойчивости составляет 0,15 с [4, 14].
Существующие технические решения. Для компенсации высших гармоник тока и напряжения используется ряд технических средств и решений, которые можно разделить на три класса: пассивные, активные и гибридные [1].
Пассивный класс устройств влияет на сопротивления участков сети или соотношение сопротивлений в какой-либо точке сети. Основными недостатками таких устройств являются ограниченность по спектру компенсируемых гармоник и невозможность адаптивной подстройки к изменениям гармонического спектра сети [11].
Активные устройства обладают свойством адаптивности, позволяют компенсировать полный спектр высших гармоник от 2 до 40 порядка и возможностью интеграции в системы автоматизированного повышения качества электроэнергии [15]. Однако существенным недостатком таких средств является дороговизна и невозможность их применения в сетях с конденсаторными установками коррекции коэффициента мощности из-за наличия резонансных явлений [2, 10].
Гибридные средства образуются из комбинации активных и пассивных устройств. Применение активных фильтров совместно с пассивными позволяет регулировать параметры последних. Также совместное применение с пассивными фильтрами в рамках гибридных систем позволяет снизить номинальные параметры активных фильтров [18, 26, 27]. Гибридные устройства классифицируются по следующим признакам: виду соединения активной и пассивной части между собой, а также способу подключения к компенсируемой сети. Также необходимо отметить, что гибридные фильтрокомпенсирующие устройства (ФКУ) повышают качество электроэнергии по нескольким показателям одновременно, т.е. обладают свойством многофункциональности. При этом подобные устройства способны компенсировать провалы и отклонения напряжения [16, 22].
Математические модели гибридных фильтркомпенсирующих устройств. Основными топологиями гибридных ФКУ являются различные комбинации активных и пассивных фильтров. Наличие пассивной части позволяет снизить массо-габаритные показатели активной части за счет снижения номинальной мощности силовых элементов, которые являются наиболее дорогостоящими в составе ФКУ.
Исходя из показателей качества электроэнергии, за которыми нужен непрерывный контроль в условиях систем электроснабжения МСК, целесообразно рассматривать две основные структуры [9, 17, 25, 28]:
• гибридная на основе параллельного активного и пассивного фильтров для обеспечения компенсации высших гармонических составляющих (ВГС) по току со стороны нелинейной нагрузки и отклонений напряжения со стороны питающей сети (гибридное ФКУ № 1);
• гибридная на основе последовательного активного и пассивного фильтров для обеспечения компенсации ВГС и провалов по напряжению со стороны источника и высших гармоник тока со стороны нелинейной нагрузки (гибридное ФКУ № 2).
При математическом и компьютерном имитационном моделировании указанных ФКУ были приняты следующие основные допущения и ограничения:
• силовые элементы активных фильтров приняты идеальными ключами (нулевое сопротивление в открытом состоянии, бесконечно большое сопротивление в закрытом состоянии);
• состояние каждого силового ключа описывается функцией Кинв, принимающей значение 0, если ключ закрыт, и значение 1, если ключ открыт;
• на протяжении одного шага интегрирования все нелинейности рассматриваются как линейные зависимости [23].
Структура гибридного ФКУ № 1 представлена на рис.1, а.
Математическая модель гибридного ФКУ № 1 основана на следующих выражениях [9, 14, 25]:
где uc(t) – мгновенное напряжение в сети; Δuc(t) – мгновенное падение напряжения линии от источника до места подключения гибридного ФКУ № 1 и Δuc(t) = ic(t)Zc; uпаф(t) – мгновенное значение напряжения на параллельном активном ФКУ; uпф(t) – мгновенное значение напряжения на пассивном ФКУ; uнн(t) – мгновенное значение напряжения на нелинейной нагрузке; ic(t) – мгновенное значение тока в сети; iпаф(t) – мгновенное значение тока активного ФКУ; iпф(t) – мгновенное значение тока пассивного ФКУ; iнн(t) – мгновенное значение тока нелинейной нагрузки; uинв(t) – мгновенное значение напряжения на выходе инвертора активного фильтра; uLф(t) – мгновенное значение падения напряжения на индуктивности активного фильтра; Lф – индуктивность на выходе активного ФКУ; iинв(t) – мгновенное значение тока инвертора активного ФКУ; Kинв(t) – модулирующая функция, характеризующая степень включения и отключения IGBT-транзисторов; udc(t) – напряжение на обкладках конденсатора активного ФКУ [10, 11].
Структура гибридного ФКУ № 2 представлена на рис.1, б.
Математическая модель гибридного ФКУ № 2 основана на следующих выражениях [8, 10, 11]:
где uк(t) – мгновенное значение компенсационного высшего напряжения на трансформаторе; Kтр – коэффициент трансформации; uсф(t) – мгновенное значение напряжения на обкладках конденсатора [21, 23].
Система управления активной частью (параллельный активный фильтр) гибридного ФКУ № 1 реализуется на основе фазовых преобразований и фазовой синхронизации опорных величин.
Система управления измеряет фазные напряжения сети (ua, ub, uc) и преобразует их в двухфазную систему αβ следующим образом:
Фазовые преобразования позволяют определить угол φ между изображающим вектором искаженного напряжения сети и его проекцией на ось α. Характер изменения и величина угла φ содержит информацию об уровне искажения, присутствующих высших гармониках, фазовом сдвиге напряжения и тока компенсируемой сети. Исходные направляющие:
Блок фазовой синхронизации корректирует угол φ до величины φʹ, соответствующей синусоидальной форме кривой напряжения сети. Далее определяются опорные токи в системе координат αβ:
где iз – сигнал задания по току. По аналогии с (3) осуществляется обратное фазовое преобразование:
После этого из опорных синусоидальных токов, определенных по выражению (6), вычитаются токи нелинейной нагрузки (ina, inb, inc):
На основании полученных токов (ioa, iob, ioc) формируются импульсы управления силовыми ключами инвертора активного фильтра. Токи ioa, iob, ioc дают информацию о наличии высших гармоник тока, которые должен компенсировать параллельный активный фильтр в составе гибридного ФКУ № 1.
Имитационное моделирование структур гибридных фильтрокомпенсирующих устройств. С учетом выражений (1), (2) и на основе приведенных структур на рис.1, а и б разработаны компьютерные имитационные модели гибридных ФКУ № 1 и № 2 в программном пакете Simulink MATLAB с учетом параметров и характеристик существующих систем электроснабжения предприятий МСК. В данных виртуальных моделях реализованы системы управления активными частями ФКУ № 1 и № 2. Имитационная модель на примере ФКУ № 1 приведена на рис.2.
В качестве исходных данных при имитационном моделировании приняты параметры нефтепромысловой распределительной сети [20]. В качестве источника электроснабжения принята промысловая воздушная линия 6 кВ длиной 3 км с мощностью трехфазного короткого замыкания на уровне 250 МВА и скважинный трансформатор 6/0,4 кВ мощностью 100 кВА. Нелинейная нагрузка моделировалась посредством трехфазного мостового неуправляемого выпрямителя (схема Ларионова) с активно-индуктивной нагрузкой мощностью 80 кВА. При моделировании активный фильтр настраивался на подавление высших гармоник тока со 2 по 40 номер включительно, так как согласно требованиям ГОСТ 32144-2013 при определении уровня искажений напряжения учитывается именно данный диапазон высших гармоник [13, 24]. Большинство серийных активных фильтров настраиваются на определенный диапазон высших гармоник, более дорогие модификации с более сложными алгоритмами работы можно настроить на подавление отдельных гармоник [31]. На рис.2 показан блок определения коэффициента искажения на примере напряжения источника «Vabc_сети». Для остальных параметров используются аналогичные блоки, встроенные в блок «Интерфейс», где задаются основные параметры и режимы моделирования.
При разработке имитационной модели параметры питающей сети и подключенной нагрузки задавались в относительных единицах, где за базис принимались усредненные величины мощностей и сопротивлений элементов. При этом за базисные принимались величины мощности нагрузки в часы максимума. Моделирование осуществлялось на примере технологических установок нефтедобычи, где мощности погружных технологических электроустановок могут превышать несколько сотен кВт [6]. Также при моделировании уровень искажения тока нагрузки задавался в диапазоне от 9 до 30 %, а уровень искажения напряжения сети – от 2 до 15 %, что соответствует результатам экспериментальных исследований в сетях нефтедобычи [7].
По результатам моделирования были получены степени снижения коэффициентов, характеризующие наличие высших гармонических составляющих в сети до и после применения ФКУ: ΔTHDI – 91, ΔTHDU – 72, ΔKI5 – 96, ΔKU5 – 75, ΔKI7 – 97, ΔKU7 – 68 % (THDI, THDU – суммарные коэффициенты гармонических составляющих по току и напряжению соответственно; KI5, KI7, KU5, KU7 – коэффициенты 5-й и 7-й гармонических составляющих по току и напряжению соответственно). Степень снижения на примере THDU и THDI определяется следующим образом:
где THDU1, THDI1 – коэффициенты до применения ФКУ; THDU2, THDI2 – коэффициенты после применения ФКУ.
Степени снижения для коэффициентов KI5, KI7, KU5, KU7 определяются аналогичным образом:
где K'U5, K'I5 – коэффициенты до применения ФКУ; K''U5, K''I5 – коэффициенты после применения ФКУ.
Гибридное ФКУ №1 с активной частью параллельного типа позволяет осуществлять компенсацию ВГС тока в сети и компенсацию реактивной мощности для обеспечения коэффициента мощности kм близкого к единице в условиях предприятий МСК. Энергетические показатели работ без ФКУ № 1 (с ФКУ № 1): Р = 0,292 (0,293) о.е., Q = 0,067 (0,001) о.е., kм = 0,974 (0,999).
Имитационная модель гибридного ФКУ № 2 представлена на рис.3.
Система управления последовательного активного фильтра в составе гибридного ФКУ № 2 реализована на основе преобразований трехфазной системы питающих напряжений в составляющие прямой, обратной и нулевой последовательности (преобразования Фортескью) [30, 34]. Выделенные составляющие прямой последовательности напряжения сети являются опорными величинами при компенсации провалов, отклонений и искажения напряжения последовательным активным фильтром в составе гибридного ФКУ № 2.
В ходе имитационного моделирования регистрировались осциллограммы формы кривой напряжения в системе электроснабжения до и после подключения ФКУ № 2. Также по результатам моделирования были получены степени снижения уровня гармонических искажений по напряжению: ΔTHDU – 85, ΔKU5 – 96, ΔKU7 – 96 %. Соответствующие степени снижения определялись аналогично ФКУ № 1 по выражениям (8) и (9).
Анализ результатов моделирования. По результатам моделирования выявлена способность гибридного ФКУ на базе параллельного активного фильтра осуществлять компенсацию высших гармоник тока и напряжения одновременно с коррекцией коэффициента мощности сети. В частности, с применением гибридного ФКУ № 1 значение суммарного коэффициента гармонических составляющих снизилось на 93,16 % по току и на 72,14 % по напряжению, а также повысился коэффициент мощности на 12,35 %. Данная особенность позволяет рассматривать гибридные ФКУ № 1 как многофункциональные устройства и на их базе создавать более сложные электротехнические комплексы и системы для автоматизированного повышения качества электроэнергии [29, 35]. При этом установлено, что применение гибридного ФКУ № 1 повышает величину потребляемой активной мощности на 0,4 %, что связано с активными потерями в силовых ключах активной части ФКУ при компенсации высших гармоник.
По результатам моделирования установлено, что гибридное ФКУ № 2 с последовательной активной частью способно создавать добавку напряжения для нормализации уровня сетевого напряжения в случае его отклонения из-за подключения нагрузки в условиях протяженных линий электропередачи. При моделировании действующее значение напряжения в момент подключения нагрузки составляет 0,84 о.е. (за базис принято номинальное значение), что недопустимо согласно требованиям ГОСТ 32144-2013. При подключении гибридного ФКУ № 2 создается добавка напряжения (ΔU), действующее значение составляет 1 о.е.:
Гибридное ФКУ № 2 на основе последовательного активного фильтра одновременно с компенсацией провалов напряжения способно подавлять высшие гармоники напряжения, что также подтверждает многофункциональность устройства. При этом уровень гармоник напряжения снижается на 85 %.
Также наличие активной части, несмотря на ее дороговизну, в виде параллельного или последовательного активного фильтра в составе гибридных структур существенно повышает эффективность подавления высших гармоник тока и напряжения. В частности, наличие параллельного активного фильтра в структуре гибридного ФКУ № 1 существенно повышает эффективность компенсации высших гармоник тока (THDI без активной части снижается с 29,09 до 14,25 %, а с активной – до 2 %). Наличие последовательного активного фильтра в структуре гибридного ФКУ № 2 существенно повышает эффективность компенсации высших гармоник напряже-ния (THDU без активной части снижается с 14,38 до 8,48 %, а с активной – до 2,14 %).
Обсуждение. Рассмотренные структуры гибридных ФКУ могут быть использованы в рамках единого электротехнического комплекса для автоматизированного повышения качества электроэнергии в сетях и системах электроснабжения различной структуры [19]. Гибридные ФКУ на основе последовательных и параллельных активных фильтров способны подавлять высшие гармоники тока и напряжения, корректировать коэффициент мощности, компенсировать отклонения напряжения в условиях МСК, где активная мощность отдельных технологических установок изменяется от нескольких десятков до нескольких сотен кВт, уровень искажения напряжения – от 1 до 20 %, уровень искажения тока – от 4 до 60 %.
На базе подобных структур могут быть созданы более совершенные универсальные компенсаторы [32, 33] в рамках гибких систем передачи переменного тока для условий предприятий МСК. Рассмотренные гибридные структуры обладают переменной структурой, что позволяет использовать их в системах комбинированного электроснабжения на основе параллельной работы централизованных и автономных источников, когда в случае аварийных режимов режим электроснабжения изменяется, а также при отключении части неответственной нелинейной нагрузки. Предметом дальнейших исследований является анализ влияния показателей режимов энергообеспечения и энергопотребления на уровень эффективности гибридных ФКУ.
Заключение. Выявлены основные типы гибридных ФКУ на основе параллельных и последовательных активных фильтров, применение которых позволяет повысить уровень качества электроэнергии в условиях систем электроснабжения предприятий МСК по ключевым показателям, включая величину высших гармоник напряжения и тока, а также отклонения напряжения. Гибридное ФКУ на основе параллельного активного фильтра способно компенсировать реактивную мощность узла нагрузки, приближая коэффициент мощности к единице.
Результаты моделирования показали достаточную, согласно требованиям ГОСТ 32144-2013, эффективность повышения качества электроэнергии разработанными гибридными ФКУ, в частности, гибридное ФКУ на основе последовательного активного фильтра на 15 % снижает уровень отклонения сетевого напряжения и в семь раз – степень его искажения. Гибридное ФКУ на базе параллельного активного фильтра способно приблизить коэффициент мощности сети к 1, снизить уровень искажений тока в десять раз, а искажений напряжения – в четыре раза. Совместное применение активных и пассивных фильтров повышает эффективность коррекции уровня высших гармоник тока и напряжения более чем в два раза.
Результаты моделирования доказали многофункциональность проанализированных гибридных ФКУ и возможность их использования в рамках более сложных электротехнических комплексов и систем автоматизированного повышения качества электроэнергии, в частности, в гибких системах передачи переменного тока (FACTS).
Литература