Submit an Article
Become a reviewer
Vol 43 Iss. 3
Pages:
9-25
Download volume:
RUS
Article

Arithmetic-geometric mean algorithm

Authors:
A. M. Zhuravskii
Date submitted:
1963-09-17
Date accepted:
1963-11-19
Date published:
1964-02-14

Abstract

The arithmetic-geometric mean algorithm introduced by Gauss is a remarkable example of approximation of a multivalued transcendental function by means of algebraic. In Gauss's works published during his lifetime and in the remaining posthumous materials, almost no attention is paid to the convergence of the algorithm and the branching of its terms is not considered at all.

Область исследования:
(Archived) Articles
Go to volume 43

References

  1. Gauss С. F. Werke Bd. III, 1866, S. 332.
  2. Gauss С. F. Werke. Bd. III, 1866, S. 361, 372, 375; Bd. X, 1917, s. 173.
  3. Gauss C. F. Werke. Bd. III, 1866, S. 491.
  4. Gauss C. F. Werke. Bd. X, 1917, S. 251.
  5. David L. J. reine und angew. Math., 1909, Bd. 135, S. 62; 1928, Bd. 159, S. 154 Rend. Circolo mat. Palermo, 1913, v. 35, p. 82.
  6. Вelа Вarna. J. reine und angew. Math., 1934, Bd. 172, S. 86; 1937. Bd. 178. S. 129.

Similar articles

About convergence of the algorithm of W. Borchardt
1964 M. I. Veinger
About numerical characterization of the local figure of the Earth
1964 A. A. Krzhizhanovskaya
Some Questions of Decomposition of Unflooded Jets
1964 V. Ya. Bril
About one interpolation problem
1964 A. M. Zhuravskii
On one general method for solving the biharmonic problem
1964 V. G. Labazin, G. M. Fedorova
About Optimal Formulas of Numerical Quadrature for Stationary Random Functions
1964 L. S. Gandin, R. E. Soloveichik