Arithmetic-geometric mean algorithm
Authors:
Abstract
The arithmetic-geometric mean algorithm introduced by Gauss is a remarkable example of approximation of a multivalued transcendental function by means of algebraic. In Gauss's works published during his lifetime and in the remaining posthumous materials, almost no attention is paid to the convergence of the algorithm and the branching of its terms is not considered at all.
Область исследования:
(Archived) Articles
References
- Gauss С. F. Werke Bd. III, 1866, S. 332.
- Gauss С. F. Werke. Bd. III, 1866, S. 361, 372, 375; Bd. X, 1917, s. 173.
- Gauss C. F. Werke. Bd. III, 1866, S. 491.
- Gauss C. F. Werke. Bd. X, 1917, S. 251.
- David L. J. reine und angew. Math., 1909, Bd. 135, S. 62; 1928, Bd. 159, S. 154 Rend. Circolo mat. Palermo, 1913, v. 35, p. 82.
- Вelа Вarna. J. reine und angew. Math., 1934, Bd. 172, S. 86; 1937. Bd. 178. S. 129.