Forced oscillations of a thin hemisphere with a mass rigidly fixed along the equator
Authors:
Abstract
Let us consider the problem of forced symmetrical oscillations of a thin hemisphere of radius R with a mass of M, rigidly fixed along the equator, under the influence of a normal load of constant surface density R. The front of the load wave propagates at a constant velocity ѵ...
Область исследования:
(Archived) Without section
References
- Watson G. N. Theory of Bessel functions, part 1. FL., 1949.
- Vlasov V. Z. General theory of shells. Gostekhizdat, 1949.
- Gradstein I. S., Ryzhik I. M. Tables of integrals, sums, series and products. Fizmatgiz, 1963.
- Brain N. G. Asymptotic methods in analysis. FL, 1961.
- Kazarinova N. N. On axisymmetric vibrations of a spherical shell and a body rigidly attached to it. J. LMI, vol. XLVIII, issue 3, 1968.
- Kazarinova N. N. Calculation of the integral of the square of the Lagrange function. J. LMI, vol. XLVIII, issue 3, 1968.
- Salekhov G. S. Calculation of series. Gostekhizdat, 1955.
- Erdein A. Asymptotic decompositions. Fizmatgiz, 1962.
Similar articles
On integral transformations of random processes in averaging the qualitative composition of ores
1974 E. I. Azbel
Kinematics of a body moving inside a vertical cylindrical ore outlet
1974 V. Ya. Bril, A. A. Kuleshov