Submit an Article
Become a reviewer
Aleksandr A. Selikhov
Aleksandr A. Selikhov
Postgraduate Student
Empress Catherine II Saint Petersburg Mining University
Postgraduate Student
Empress Catherine II Saint Petersburg Mining University
Saint Petersburg
Russia

Articles

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-09-09
  • Date accepted
    2024-11-12
  • Date published
    2024-11-12

Acoustic emission criteria for analyzing the process of rock destruction and evaluating the formation of fractured reservoirs at great depths

Article preview

In order to study the mechanism of destruction of rocks of various genesis and the formation of fractured reservoirs at great depths, laboratory studies of rock samples in the loading conditions of comprehensive pressure with registration of acoustic emission (AE) and parameters of the process of changing the strength and deformation properties of samples were carried out. The spatial distributions of the hypocenters of AE events for each sample were investigated. By the nature of the distributions, the fracture geometry is described, then visually compared with the position of the formed macrofractures in the samples as a result of the tests. The time trends of the amplitude distribution b , set by the Guttenberg – Richter law, were calculated, which were compared with the loading curves and trends of the calculated AE activity. Based on the analysis of the AE process for three types of rocks – igneous (urtites), metamorphic (apatite-nepheline ores), and sedimentary (limestones) – parameterization of acoustic emission was carried out to determine the features of the deformation process and related dilatancy. As a result, three types of destruction of samples were identified, their geometry and changes in strength and seismic criteria were established.

How to cite: Trushko V.L., Rozanov A.O., Saitgaleev M.M., Petrov D.N., Ilinov M.D., Karmanskii D.A., Selikhov A.A. Acoustic emission criteria for analyzing the process of rock destruction and evaluating the formation of fractured reservoirs at great depths // Journal of Mining Institute. 2024. Vol. 269. p. 848-858. EDN EGOJFL