В работе представлен анализ преимуществ и ограничений дополнительных мер интенсификации транспортирования потока закладочной гидросмеси. Показаны результаты анализа условий применения насосного оборудования для перемещения потоков с различными реологическими свойствами. Приведены обобщения способов влияния на внутреннее сопротивление закладочных гидросмесей посредством механической активации, а также повышения текучести благодаря применению химических добавок. Представлены результаты исследований, подтверждающих целесообразность применения труб с полимерной футеровкой, которая показала свою эффективность при перекачивании потоков гидросмесей с различной концентрацией наполнителя. Разработана аналитическая модель движения гидросмеси в трубопроводе закладочного комплекса. Тенденции изменения давления, необходимого для обеспечения перемещения гидросмеси в трубопроводах различного диаметра, имеют экспоненциальный характер при условии постоянства свойств потока. Выполнена оценка влияния крупности частиц на режим движения формируемого гетерогенного потока, а также на распределение плотности потока по сечению, характеризующая расслоение и изменение реологических свойств закладочной гидросмеси. Сформулирована аналитическая модель централизованной миграции дисперсной фазы потока гидросмеси, описывающая влияние турбулентного перемешивания потока на поведение твердых частиц. Выполнена оценка вторичной диспергации твердой фракции гидросмеси, обуславливающая изменение консистенции потока. Выполненные исследования влияния коэффициента консистенции потока выявили, что переизмельчение фракций наполнителя гидросмеси способствует возрастанию потребного напора в трубопроводной системе.
Добыча руд подземным способом характеризуется ослаблением устойчивости вмещающих породных массивов и накоплением минеральных отходов. Полнота использования недр обеспечивается применением технологий с заполнением пустот твердеющими смесями, что требует качественного сырья для получения требуемой прочности. Дефицит вяжущей компоненты может быть восполнен применением гранулированных шлаков доменного производства, хвостов обогащения, золошлаков и других отходов. Чаще других пустоты закладывают смесями с комбинированием цемента и вяжущей добавки. Смеси с добавками к цементу золошлака в эквивалентном количестве не уступают прочности смеси только с цементом, особенно при размоле золошлака. Свойствами закладочных массивов при использовании композитных вяжущих компонентов и инертных заполнителей управляют путем механического, химического, физического и энергетического воздействия на этапах приготовления и транспортирования твердеющих смесей. Для получения активной фракции заменителей цемента применяют дезинтеграторы, использующие силы инерции материалов при высокой скорости вращения с повышением высоких показателей активности и меньшими затратами энергии. Компонентами твердеющих смесей может быть большинство отходов горного производства и смежных отраслей, что определяется экспериментально в конкретных условиях.
При больших скоростях подвигания линии очистного забоя повышаются требования к надежности работы подрабатываемых дегазационных скважин. Проблемным является вопрос обеспечения интенсивности отработки газоносных пластов в условиях роста природной газоносности, глубины разработки и производительности очистного оборудования. Наибольшую угрозу представляет потеря устойчивости скважин в зоне влияния опорного давления (перед лавой) и области интенсивных сдвижений зависающих породных консолей (позади лавы). Интенсификация подсосов воздуха вследствие деформирования канала ствола скважины приводит к обеднению отводимой метановоздушной смеси и росту рисков нарушения безопасного аэрогазового режима выемочного участка. Описан механизм влияния очистной выемки на состояние подземных скважин и образование зависающих породных консолей. Приведена типизация основных видов деформаций сечения скважин. Указаны критические недостатки наиболее применяемых технологических схем отработки газоносных пластов с высокими нагрузками на очистные забои, что не позволяет обеспечить нормальную работу дегазационной системы. В результате исследований уточнена зависимость влияния числа шпуров, а также расстояния между осями шпуров и скважиной на напряженное состояние контура скважины. Исходя из этого предложена формула для расчета параметров бурения системы разгрузочных шпуров. Внедрение данных мероприятий позволит увеличить эффективность подземной дегазации и обеспечить рост интенсивности отработки газоносных угольных пластов.