Submit an Article
Become a reviewer
Marina V. Bykova
Marina V. Bykova
Researcher, Ph.D.
Empress Catherine II Saint Petersburg Mining University
Researcher, Ph.D.
Empress Catherine II Saint Petersburg Mining University
Saint Petersburg
Russia

Articles

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-22
  • Date accepted
    2024-06-13
  • Date published
    2024-07-04

Comprehensive utilization of urban wastewater sludge with production of technogenic soil

Article preview

The article presents the analysis of the existing approach to wastewater sludge treatment and justifies the selection of the most promising management technology that allows maximum use of wastewater sludge resource po-tential. To obtain a useful product (biocompost) suitable for use as part of technogenic soil, experimental studies of aerobic stabilization of organic matter of dehydrated urban wastewater sludge with the addition of other waste by using passive composting technology were carried out. The technology is included in the list of best available technologies (BAT). The selection of the most optimal components for the mixture was based on the results of determining the C and N content, humidity and pH of the components used that ensured the composting of organic waste. The results of laboratory studies of the obtained biocompost according to the main agrochemical and sanitary-epidemiological indicators are presented. Testing was carried out according to the criterion of toxicity of the biocompost’s aqueous extract. The assessment of the technogenic soil was performed when using biocompost in its composition for compliance with existing hygienic requirements for soil quality in the Russian Federation. Based on the results of the vegetation experiment, optimal formulations of the technogenic soil were determined, i.e., the ratio of biocompost and sand, under which the most favorable conditions for plant growth are observed according to a combination of factors such as the number of germinated seeds, the maximum height of plants and the amount of biomass. The conducted research makes it possible to increase the proportion of recycled urban wastewater sludge in the future to obtain soils characterized by a high degree of nutrient availability for plants and potentially suitable for use in landscaping, the biological stage of reclamation of technogenically disturbed lands, as well as for growing herbaceous plants in open and protected soil.

How to cite: Bykova M.V., Malyukhin D.M., Nagornov D.O., Duka A.A. Comprehensive utilization of urban wastewater sludge with production of technogenic soil // Journal of Mining Institute. 2024. Vol. 267. p. 453-465. EDN IAYJKS
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-08
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Methodology for thermal desorption treatment of local soil pollution by oil products at the facilities of the mineral resource industry

Article preview

The analysis of the main environmental consequences of leaks and local spills of petroleum products at the enterprises of the mineral resource complex is presented. It is established that the problem of soil contamination with petroleum products at the facilities of the mineral resource complex and enterprises of other industries is caused by significant volumes of consumption of the main types of oil products. Based on the results of the author's previous field research, a series of experiments was carried out, consisting in modeling artificial soil pollution with petroleum products such as gasoline, diesel fuel, highly refined oil, motor oil, and transmission oil, followed by their purification by heat treatment at temperatures of 150, 200, and 250 °C. The 250 °C limit of the heating temperature was set due to the need to partially preserve the structure and quality of the soil after heat treatment to preserve its fertility. When the processing temperature rises to 450 °C, all humates are completely burned out and, as a result, productivity is lost. Confirmation is provided by the results of experiments to determine the humus content in uncontaminated soil and soil treated at different temperatures. It was found that at a maximum processing temperature of 250 °C, about 50 % of the initial organic carbon content is preserved. According to the results of the conducted experimental studies, the dependences of the required processing temperature on the concentration of petroleum products to reduce the concentration of petroleum products to an acceptable level have been established. The methodology of thermal desorption cleaning of soils with varying degrees of contamination at enterprises of the mineral resource complex is presented.

How to cite: Pashkevich M.A., Bykova M.V. Methodology for thermal desorption treatment of local soil pollution by oil products at the facilities of the mineral resource industry // Journal of Mining Institute. 2022. Vol. 253. p. 49-60. DOI: 10.31897/PMI.2022.6