Submit an Article
Become a reviewer
L. S. Gandin
L. S. Gandin
Ph.D.
, Ph.D.

Co-authors

Articles

Article
  • Date submitted
    1963-09-03
  • Date accepted
    1963-11-18

About Optimal Formulas of Numerical Quadrature for Stationary Random Functions

Article preview

Let there be a function f(x), which is a realization of some stationary random function. It is required to find an approximate value of the integral ...

How to cite: Gandin L.S., Soloveichik R.E. About Optimal Formulas of Numerical Quadrature for Stationary Random Functions // Journal of Mining Institute. 1964. Vol. 43. Iss. 3. p. 48-58.
Article
  • Date submitted
    1960-09-03
  • Date accepted
    1960-11-13

О РАСПРОСТРАНЕНИИ РАДИОАКТИВНОЙ ПРИМЕСИ В АТМОСФЕРЕ

Article preview

ПОСТАНОВКА ЗАДАЧИВ связи с созданием высокочувствительной измерительной аппара­туры стало возможным определение малых концентраций и потоков радиоактивной примеси в атмосфере. Благодаря этому возникла важ­ная с практической точки зрения задача определения положения и мощ­ности источников примеси, расположенных под землей, по наблюдениям в приземном слое атмосферы. В основу решения этой задачи должна быть положена теория, объясняющая распространение радиоактивной примеси в двухслойной среде земля—атмосфера.

How to cite: Gandin L.S., Soloveichik R.E. // Journal of Mining Institute. 1961. Vol. 37. Iss. 3. p. 30.
Article
  • Date submitted
    1957-09-07
  • Date accepted
    1957-11-06

On multidimensional symmetric delta functions

Article preview

Recently, the formal apparatus of delta functions, i.e., discontinuous functions defined by equalities, has been increasingly applied to the solution of various problems of mathematical physics ...

How to cite: Gandin L.S., Soloveichik R.E. On multidimensional symmetric delta functions // Journal of Mining Institute. 1958. Vol. 36. Iss. 3. p. 13-15.
Article
  • Date submitted
    1955-09-20
  • Date accepted
    1955-11-15

Heat distribution in an infinite medium in the presence of a flat interface

Article preview

Let’s consider the following problem in the theory of heat conduction. An initial temperature distribution is given in a space consisting of two media separated by a flat interface. It is required to find the temperature at any point in the space, at any moment of time. The thermal characteristics of each of the two media are assumed to be constant. The formulated problem has been considered by a number of authors for the one-dimensional case. The possibility of solving the multidimensional case using integral equations was pointed out by Münz [4]. In [5], a two-dimensional problem was solved by the method of successive approximations. In the present paper, a closed-form solution of the problem under consideration is given for the two- and three-dimensional case. The solution method can be applied to a number of similar problems.

How to cite: Gandin L.S., Soloveitchik R.E. Heat distribution in an infinite medium in the presence of a flat interface // Journal of Mining Institute. 1956. Vol. 33. Iss. 3. p. 205-212.