В России и ряде зарубежных стран предложены различные способы химического обогащения бокситов, которые, как правило, не затрагивают вопроса регенерации кремнещелочного раствора или сводят его к выделению диоксида кремния в виде силиката кальция. Но технологические схемы химического обогащения предусматривают возврат щелочного раствора после регенерации на обескремнивание следующих партий боксита. Известно, что химическое обогащение сопровождается вторичным процессом – образованием гидроалюмосиликата натрия, скорость образования которого зависит от концентрации в щелочном растворе как оксида алюминия, так и диоксида кремния. В работе приводятся данные двухстадийного осаждения диоксида кремния из щелочного раствора. На первой стадии в виде гидроалюмосиликата натрия и на второй – в виде силиката кальция.
Определена высокая избирательность гидрокарбоалюминатов щелочно-земельных металлов и оксида магния по отношению к наиболее опасным классам органических веществ, играющих определяющую роль в снижении степени декомпозиции и ухудшении свойств получаемого глинозема – гуминовые, карбоновые кислоты и высокомолекулярные органические соединения. Сода хорошо сорбирует гуминовые кислоты (около 40 %) и неэффективна для удаления карбоновых кислот и высокомолекулярных соединений. Вредоносные группы органических веществ, в основном, обеспечивают цветность алюминатного раствора. Фотометрический анализ дает объективную оценку содержания окрашенных органических веществ по отношению к исходному их количеству в алюминатном растворе.
Исследовалось поведение примесей окрашенных органических веществ (ООВ) алюминатных растворов способа Байера при их обработке электролизом. Представлены экспериментальные данные о влиянии различных технологических параметров, найдены условия, позволяющие снизить содержание ООВ на 50-80 %.
В статье раскрыты основные принципы формирования системы энергосбережения и энергоэффективности, проведен анализ потенциала энергосбережения на предприятиях металлургического комплекса. Описаны этапы внедрения системы энергетического менеджмента, представлена структура энергетического анализа на предприятии.
Изложены теоретические основы синтеза гидрокарбоалюмината кальция 4CaO×Al2O3×mCO2×11H2O на основе СаСО3 в алюминатно-щелочной системе. Построены изотермы метастабильных равновесий в системе CaCO3 – 4CaO×Al2O3×mCO2×11H2O – 3CaO×Al2O3×6H2O – NaAl(OH)4 – NaOH – H2O при 50, 70 и 90оС.
Приведены результаты лабораторных исследований по сверхглубокому обескремниванию алюминатных растворов на основе добавок гидрокарбоалюмината кальция 4CaO×Al2O3×0,5CO2×11H2O при опережающем вводе в процесс оборотного гидрогранатового шлама. Получены качественно новые алюминатные растворы с кремниевым модулем (вес. отношение Al2O3 / SiO2), равным 50000 ед. Воздействие опережающего ввода гидро-гранатового шлама на глубину обескремнивания дано с позиций теории гетерогенного катализа. Полученные результаты могут быть использованы при решении проблемы диверсификации производства при комплексной переработке фосфогипса в части синтеза гидрокарбоалюмината кальция на основе фосфомела.
Гидросульфоалюминаты кальция (ГСАК) являются одним из компонентов цементного камня. Они медленно (4-6 мес.) образуются вместе с упорядочением структуры цементного камня в водной среде при умеренной температуре (0-25 °С). Низкая скорость кристаллизации ГСАК не позволяла рассматривать их как самостоятельные объекты для использования в различных технологических целях. Доказана возможность образования ГСАК (4CaO×Al 2 O 3 ×mSO 3 ×nH 2 O) в среде сильных электролитов – алюминатных растворах глиноземного производства. Они кристаллизуются в течение короткого времени (1-2 ч) и сохраняют свою устойчивость достаточно долго – 24-36 ч. Это позволило наметить пути их промышленного использования.
Описана математическая модель процесса сверхглубокого обескремнивания алюминатных растворов с предварительным вводом оборотного гидрогранатового шлама, которая может быть использована для создания АСУТП процесса в технологической схеме комплексной переработки нефелинового концентрата на глинозем и попутные продукты.
Изложены вопросы теории и практики низкотемпературного обескремнивания алюминатных растворов. Дано научное обоснование использования активированного нефелинового концентрата в качестве затравки для кристаллизации гидроалюмосиликата натрия. Представлены материалы экспериментальных исследований по равновесию и кинетике обескремнивания в системе активированный нефелиновый концентрат – алюминатный раствор. Показана возможность достижения технологических показателей низкотемпературного процесса, достаточных для последующего глубокого осаждения кремнезема.
Исследованы условия кристаллизации гидрокарбоалюминатов кальция (ГКАК) – 4CaO × Al 2 O 3 × mCO 2 × 11H 2 O при выщелачивании алюминатных нефелиновых спеков. использование результатов исследований в реальной технологии обеспечивает повышение извлечения из спека Al 2 O 3 и R 2 O на 1,5-2 %. Изучены коагулирующие свойства ГКАК в системе алюминатный раствор – нефелиновый шлам, что позволило усовершенствовать процессы сгущения и промывки нефелиновых шламов. Разработаны предложения по усовершенствованию технологии получения крупнозернистого глинозема на основе повышения эффективности карбоалюминатного метода разделения гидроксокомплексов Al (III) и Si (IV) и использования комбинированного модификатора роста кристаллов CаCO 3 – ГКАК.
Получены данные, позволяющие выявить наиболее эффективные решения по производству новых попутных продуктов при комплексной переработке нефелинов. Показано, что основную роль в технологии новых материалов: минерализаторов карбосульфоалюминатного типа, быстротвердеющих цементов типа «Rapid», высокоглиноземистых цементов, литейных цементов – играют гидрокарбоалюминаты кальция, синтезированные в условиях глиноземного производства. Приведены основные технические характеристики новых продуктов.