Submit an Article
Become a reviewer

Search articles for by keywords:
ophiolites

Geology
  • Date submitted
    2023-02-27
  • Date accepted
    2023-10-25
  • Date published
    2024-04-25

Microstructural features of chromitites and ultramafic rocks of the Almaz-Zhemchuzhina deposit (Kempirsai massif, Kazakhstan) according to electron backscatter diffraction (EBSD) studies

Article preview

Microstructural features of the main rock-forming minerals of host ultramafic rocks (olivine, orthopyroxene) and chrome spinel from ores of the Almaz-Zhemchuzhina deposit were studied using the electron backscatter diffraction method. For ultramafic rocks, statistical diagrams of the crystallographic orientation of olivine and orthopyroxene were obtained, indicating the formation of a mineral association in conditions of high-temperature subsolidus plastic flow in the upper mantle. The main mechanisms were translation gliding and syntectonic recrystallization. Olivine deformation occurred predominantly along the (010)[100] and (001)[100] systems. The textural and structural features of chromitites reflect plastic flow processes, most pronounced in lenticular-banded ores. Microstructure maps in inverse pole figure encoding show differences in the grain size composition of the ores: areas consisting of disseminated chromitites are characterized by a finer-grained structure compared to lens-shaped segregations of a massive structure. Analysis of microstructure maps shows that during the transition from disseminated to massive ores, there is a widespread development of recrystallization, adaptation of neighbouring grains to each other, resulting in homogenization of crystallographic orientation in aggregates. The data obtained develop ideas about the rheomorphic nature of chromitite segregations in ophiolite dunites. It is assumed that the coarsening of the structure of massive chromitites is critically associated with an increase in the concentration of ore grains during solid-phase segregation within a plastic flow, when individual chrome spinel grains, initially separated by silicate material, begin to come into direct contact with each other.

How to cite: Saveliev D.E., Sergeev S.N., Makatov D.K. Microstructural features of chromitites and ultramafic rocks of the Almaz-Zhemchuzhina deposit (Kempirsai massif, Kazakhstan) according to electron backscatter diffraction (EBSD) studies // Journal of Mining Institute. 2024. Vol. 266. p. 218-230. EDN FJNEDQ
Geology
  • Date submitted
    2022-03-20
  • Date accepted
    2022-05-25
  • Date published
    2022-07-26

Ophiolite association of Cape Fiolent (western part of the Mountainous Crimea) – the upper age constraint according to the U-Pb isotope dating of plagiorhyolites (Monakh Cliff)

Article preview

The article presents the results of U-Pb isotope dating (SHRIMP-II, VSEGEI, Saint Petersburg) of zircon crystals extracted from plagiorhyolites of the Monakh Cliff in the area of Cape Fiolent in the western part of the Mountainous Crimea (southern suburb of Sevastopol). a concordant age estimate of 168.3±1.3 Ma was obtained from 20 zircon crystals. It exactly corresponds to the Bajocian/Bathonian boundary of the Middle Jurassic according to the International Chronostratigraphic Chart (February 2022 version). The available results of isotope dating of igneous rocks from the Mountainous Crimea, as well as their geochemical typification are synthesised. The plagiorhyolites of the Monakh Cliff in the area of Cape Fiolent are spatially, and most likely paragenetically, associated with the wallrock (Cape Vinogradny) and ore (Heraclea Plateau on the cognominal peninsula) massive sulphide formations, as well as pillow basalts, gabbroids, and serpentinized hyperbasites, combined into the ophiolite association of Cape Fiolent. The obtained dating is the upper age limit for the entire ophiolite association of Cape Fiolent.

How to cite: Kuznetsov N.B., Romanyuk T.V., Strashko A.V., Novikova A.S. Ophiolite association of Cape Fiolent (western part of the Mountainous Crimea) – the upper age constraint according to the U-Pb isotope dating of plagiorhyolites (Monakh Cliff) // Journal of Mining Institute. 2022. Vol. 255. p. 435-447. DOI: 10.31897/PMI.2022.37