Submit an Article
Become a reviewer

Search articles for by keywords:
Alexander Column

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-11
  • Date accepted
    2023-09-20
  • Date published
    2023-10-27

Current state of above-ground and underground structures of the Alexander Column: an integral basis for its stability

Article preview

The Alexander Column as a compositional center of the architectural ensemble of Palace Square in Saint Petersburg, Russia, has always been a matter of concern for both the public and specialists due to progressive deterioration of its granite shaft caused by crack formation. The article examines previous studies related to the inspection and restoration of the column's shaft and other parts above ground level, as well as reasons for crack initiation and propagation in the column. An analysis was performed on the anomalies in the Fennoscandian Shield and the structural-tectonic conditions at the Montferrand quarry site, revealing the presence of faults and circular features within the studied area. The research considers N.Hast's measurements of excess tectonic stresses in anomaly zones (southeastern Finland), which acted horizontally and resulted in the development of tensile cracks within the granite massif and later in the column’s shaft after its installation. The most dangerous type of deformation for the Alexander Column is its tilt in the northeast direction, recorded in 1937 and 2000. The article analyzes the construction features of the column's foundations and additional underground elements, as well as soil and groundwater characteristics based on archival data. The contamination history of the underground space is taken into account, and an analogy-based method is used to assess the engineering-geological and hydrogeological conditions of the underground load-bearing structures within the placement zone of the Alexander Column and the New Hermitage buildings. The results of visual observations on the nature of deterioration and deformation of the pavement around the monument, as well as its pedestal, indicating the development of uneven settlement of the foundation, are presented. The article concludes with general recommendations for organizing and implementing comprehensive monitoring to forecast the deformation dynamics of the Alexander Column.

How to cite: Dashko R.E., Karpenko A.G. Current state of above-ground and underground structures of the Alexander Column: an integral basis for its stability // Journal of Mining Institute. 2023. Vol. 263 . p. 757-773. EDN OSYEHQ
Metallurgy and concentration
  • Date submitted
    2020-06-10
  • Date accepted
    2020-11-19
  • Date published
    2021-04-26

Influence of jarosite precipitation on iron balance in heap bioleaching at Monywa copper mine

Article preview

Ferric iron is an important oxidant in sulfide ore bioleaching. However, recirculating leach liquors leads to excess iron accumulation, which interferes with leaching kinetics and downstream metal recovery. We developed a method for controlling iron precipitation as jarosite to reduce excess iron in heap bioleaching at Monywa copper mine. Jarosite precipitation was first simulated and then confirmed using batch column tests. From the simulations, the minimum pH values for precipitation of potassium jarosite, hydronium jarosite, and natrojarosite at 25 °C are 1.4, 1.6, and 2.7, respectively; the minimum concentrations of potassium, sulfate, ferric, and sodium ions are 1 mM, 0.54, 1.1, and 3.2 M, respectively, at 25 °C and pH 1.23. Column tests indicate that potassium jarosite precipitation is preferential over natrojarosite. Moreover, decreased acidity (from 12 to 8 g/L), increased temperature (from 30 to 60 °C), and increased potassium ion concentration (from 0 to 5 g/L) increase jarosite precipitation efficiency by 10, 5, and 6 times, respectively. Jarosite precipitation is optimized by increasing the irrigating solution pH to 1.6. This approach is expected to reduce the operating cost of heap bioleaching by minimizing the chemicals needed for neutralization, avoiding the need for tailing pond construction, and increasing copper recovery.

How to cite: Soe K.M., Ruan R., Jia Y., Tan Q., Wang Z., Shi J., Zhong C., Sun H. Influence of jarosite precipitation on iron balance in heap bioleaching at Monywa copper mine // Journal of Mining Institute. 2021. Vol. 247 . p. 102-113. DOI: 10.31897/PMI.2020.1.11
Oil and gas
  • Date submitted
    2020-05-26
  • Date accepted
    2020-06-10
  • Date published
    2020-06-30

Theoretical analysis of frozen wall dynamics during transition to ice holding stage

Article preview

Series of calculations for the artificial freezing of the rock mass during construction of mineshafts for the conditions of a potash mine in development was carried out. Numerical solution was obtained through the finite element method using ANSYS software package. Numerical dependencies of frozen wall thickness on time in the ice growing stage and ice holding stage are obtained for two layers of the rock mass with different thermophysical properties. External and internal ice wall boundaries were calculated in two ways: by the actual freezing temperature of pore water and by the temperature of –8 °С, at which laboratory measurements of frozen rocks' strength were carried out. Normal operation mode of the freezing station, as well as the emergency mode, associated with the failure of one of the freezing columns, are considered. Dependence of a decrease in frozen wall thickness in the ice holding stage on the duration of the ice growing stage was studied. It was determined that in emergency operation mode of the freezing system, frozen wall thickness by the –8 °C isotherm can decrease by more than 1.5 m. In this case frozen wall thickness by the isotherm of actual freezing of water almost always maintains positive dynamics. It is shown that when analyzing frozen wall thickness using the isotherm of actual freezing of pore water, it is not possible to assess the danger of emergency situations associated with the failure of freezing columns.

How to cite: Semin M.A., Bogomyagkov A.V., Levin L.Y. Theoretical analysis of frozen wall dynamics during transition to ice holding stage // Journal of Mining Institute. 2020. Vol. 243 . p. 319-328. DOI: 10.31897/PMI.2020.3.319
Mining
  • Date submitted
    2019-01-11
  • Date accepted
    2019-03-17
  • Date published
    2019-06-25

Improving methods of frozen wall state prediction for mine shafts under construction using distributed temperature measurements in test wells

Article preview

Development of mineral deposits under complex geological and hydrogeological conditions is often associated with the need to utilize specific approaches to mine shaft construction. The most reliable and universally applicable method of shaft sinking is artificial rock freezing – creation of a frozen wall around the designed mine shaft. Protected by this artificial construction, further mining operations take place. Notably, mining operations are permitted only after a closed-loop frozen section of specified thickness is formed. Beside that, on-line monitoring over the state of frozen rock mass must be organized. The practice of mine construction under complex hydrogeological conditions by means of artificial freezing demonstrates that modern technologies of point-by-point and distributed temperature measurements in test wells do not detect actual frozen wall parameters. Neither do current theoretical models and calculation methods of rock mass thermal behavior under artificial freezing provide an adequate forecast of frozen wall characteristics, if the input data has poor accuracy. The study proposes a monitoring system, which combines test measurements and theoretical calculations of frozen wall parameters. This approach allows to compare experimentally obtained and theoretically calculated rock mass temperatures in test wells and to assess the difference. Basing on this temperature difference, parameters of the mathematical model get adjusted by stating an inverse Stefan problem, its regularization and subsequent numerical solution.

How to cite: Levin L.Y., Semin M.A., Parshakov O.S. Improving methods of frozen wall state prediction for mine shafts under construction using distributed temperature measurements in test wells // Journal of Mining Institute. 2019. Vol. 237 . p. 268-274. DOI: 10.31897/PMI.2019.3.274
Electromechanics and mechanical engineering
  • Date submitted
    2016-11-14
  • Date accepted
    2017-01-09
  • Date published
    2017-04-14

Method of restoring strength determination test

Article preview

The main requirements for an electric unit at the stages of its design, development, production and usage are described in technical specifications (TS) and standards (GOST). The electric unit should work in accordance with a specific purpose and have significant reliability, durability and safety. The reliability and durability of electric unit significantly depends on restoring strength speed value, that is growth of breakage voltage in arc pass for eliminating repeated arc strike. This article describes several methods of test identification of restoring strength, which were carried out at special testing laboratory units. They are described in relation to conditions of measuring the residual arc column of AC current after it reaches zero point and can be used in designing arc blowout units of low voltage.

How to cite: Apollonskii S.M., Kuklev Y.V. Method of restoring strength determination test // Journal of Mining Institute. 2017. Vol. 224 . p. 235-239. DOI: 10.18454/PMI.2017.2.235
Problems in geomechanics of technologeneous rock mass
  • Date submitted
    2009-07-27
  • Date accepted
    2009-09-15
  • Date published
    2010-04-22

Geomechanical problems in the forecast of stress-strain state of underground stations of the metro at a great depth

Article preview

Forecast of stress and strain state of deep underground metro stations is considered in this article. A complex approach to study of static work of the metro stations including the in situ testing at different stages of their construction and numerical modeling with finite element method is shown.

How to cite: Demenkov P.A., Dolgiy I.E., Ochkurov V.I. Geomechanical problems in the forecast of stress-strain state of underground stations of the metro at a great depth // Journal of Mining Institute. 2010. Vol. 185 . p. 76-80.