Submit an Article
Become a reviewer

Search articles for by keywords:
пневмокомпенсатор

Oil and gas
  • Date submitted
    2020-05-21
  • Date accepted
    2020-10-05
  • Date published
    2020-11-24

Method of calculating pneumatic compensators for plunger pumps with submersible drive

Article preview

One of the most promising ways to improve the efficiency of mechanized oil production is a plunger pump with a submersible drive, which allows obtaining harmonic reciprocating movement of the plunger. In the pumping process of well products by plunger pumps, oscillations in the velocity and pressure of the liquid in the lifting pipes occur, which lead to an increase in cyclic variable loads on the plunger, a decrease in the drive life period and the efficiency of the pumping unit. To eliminate the pulsation characteristics of the plunger pump and increase the reliability indicators of the pumping unit (in particular, the overhaul period), pneumatic compensators can be used. A method for calculating the optimal technological parameters of a system of deep pneumatic compensators for plunger pumping units with a submersible drive, based on mathematical modeling of hydrodynamic processes in pipes, has been developed. Calculations of the forming flow velocity and pressure in the lifting pipes of submersible plunger units equipped with pneumatic compensators (PC) have been carried out. Influence of the PC technological parameters on the efficiency of smoothing the oscillations of velocity and pressure in the pipes has been analyzed. Non-linear influence of the charging pressure and PC total volume on the efficiency of their work has been established. Optimal pressure of PC charging, corresponding to the minimum pressure in the tubing during the pumping cycle for the considered section of the tubing, is substantiated. Two ultimate options of PC system placement along the lifting pipes are considered. In the first option, PC are placed sequentially directly at the outlet of the plunger pump, in the second - evenly along the lift. It is shown that the first option provides the minimum amplitude of pressure oscillations at the lower end of the tubing and, accordingly, variable loads on the pump plunger. Nature of the pressure and flow velocity oscillations in the tubing at the wellhead for both options of PC placement has similar values .

How to cite: Timashev E.O. Method of calculating pneumatic compensators for plunger pumps with submersible drive // Journal of Mining Institute. 2020. Vol. 245. p. 582-590. DOI: 10.31897/PMI.2020.5.10
Electromechanics and mechanical engineering
  • Date submitted
    2017-08-30
  • Date accepted
    2017-11-21
  • Date published
    2018-02-22

Simulation of operation of pneumatic compensator with quasi-zero stiffness in the electric centrifugal submersible pump unit

Article preview

The ECSPU pneumatic compensators with quasi-zero stiffness are proposed. The pneumatic compensator with quasi-zero stiffness is suggested to be made in the form of pneumatic spring assemblies having a power characteristic with a positive stiffness working area and a set of successively connected Belleville springs and a power characteristic with a working area of negative stiffness. Structurally, a set of Belleville springs is located inside the air spring and supports pneumatic compensator piston. As a result of adding the negative stiffness of the disc spring washers set and the positive stiffness of the pneumatic spring, the resulting system (the proposed pneumatic compensator) acquires a quasi-zero or specified low stiffness. The efficiency of the suggested pneumatic compensator was determined by the possibility of moving its piston from the effects of various pressure drops. It was assumed that the greater the distance the piston can move under a given action, the more effective the pneumatic compensator is. The effect of various forces acting on the piston in the case of pressure drops on the discharge line of the electric centrifugal submersible pump units (ECSPU) is simulated: a rapidly decreasing load; a sudden increase in the force acting on the piston and vibration impact. In all the considered examples, the displacement of the piston was several meters, which corresponds to the length of the working area of the power characteristic of the considered pneumatic compensator with quasi-zero stiffness. It is shown that existing pneumatic compensators, which are like gas caps, are in principle unable to provide the same displacement of the piston under the same effects on it. For their effective operation, the size of the gas cap should be several tens of meters, which is impossible in the conditions of the well. In the calculations, it is shown that it is possible to manufacture the necessary disk spring washers from various materials: steel; fiberglass FGM; beryllium bronze. Of particular interest are disk spring washers made of beryllium bronze, which are capable of withstanding up to 20 billion load cycles.

How to cite: Zotov A.N., Urazakov K.R., Dumler E.B. Simulation of operation of pneumatic compensator with quasi-zero stiffness in the electric centrifugal submersible pump unit // Journal of Mining Institute. 2018. Vol. 229. p. 70-76. DOI: 10.25515/PMI.2018.1.70