Submit an Article
Become a reviewer

Search articles for by keywords:
золотоносные эпитермальные кварцевые жилы

Geology
  • Date submitted
    2022-02-22
  • Date accepted
    2022-09-15
  • Date published
    2022-11-10

The problem of the genesis of the Mesoarchean aluminosilicate rocks from the Karelian craton and their possible use as a quartz-feldspar raw material

Article preview

The article presents original data obtained in the study of the chemical and mineral compositions of the Late Archean aluminosilicate rocks (formerly called silicites) from the Koikari and Elmus structures of the Vedlozero-Segozero greenstone belt of the Karelian craton (Central Karelia). A comprehensive study of these formations revealed their complex genesis as a result of the late imposition of hydrothermal and metamorphic alteration on sedimentary and volcanic-sedimentary rocks of feldspar-quartz composition. Due to the superimposed metasomatic (temperature?) impact on feldspar-quartz siltstones, Fe was removed from microinclusions in quartz and feldspar and its oxides were concentrated along the grain boundaries. Minerals such as monazite, parisite, allanite are also located either along the grain boundaries of quartz and feldspars, or together with calcite they fill microfractures, which makes it possible to get rid of them when preparing quartz-feldspar concentrates using various beneficiation technologies. According to most indicators limited by GOSTs, individual samples in their natural form meet the requirements for quartz-feldspar raw materials for use as part of batch in the production of diverse types of glass. Additional beneficiation of the feedstock (grinding, screening into narrow classes and further magnetic separation) leads to a decrease in Fe 2 O 3 content to normalized values. The resulting quartz-feldspar concentrates with various particle sizes can be used in the production of building material and fine ceramics (sanitary and ceramic products, facing and finishing tiles, artistic, household porcelain and faience). The homogeneity of the mineral and chemical composition, the possibility of compact extraction and beneficiation (including in mobile small-sized installations) increase the prospects and competitiveness of this non-traditional feldspar raw material from Central Karelia.

How to cite: Kondrashova N.I., Bubnova T.P., Medvedev P.V. The problem of the genesis of the Mesoarchean aluminosilicate rocks from the Karelian craton and their possible use as a quartz-feldspar raw material // Journal of Mining Institute. 2022. Vol. 257 . p. 720-731. DOI: 10.31897/PMI.2022.65
Geology
  • Date submitted
    2018-11-10
  • Date accepted
    2019-01-17
  • Date published
    2019-04-23

AMT soundings in the dead band within the Chukotka region (Russian Far East)

Article preview

The article analyzes the amplitude spectra of audio magnetotelluric sounding (AMTs) data. Particular attention is focused on the frequency range from 1 to 5 kHz, which is called dead band. We analyzed the data of base stations used in the fieldwork during the summer and autumn seasons in 2013, 2014, and 2017. The area of work is located in the Chukotka Autonomous Area beyond the Arctic Circle. Previous researchers noted that a reliable signal in the dead band can only be obtained at nighttime. The authors of the article found that in Chukotka region in the daytime against the minimum signal within the dead band there is a local maximum at a frequency of 2.4 kHz. When registering a field for more than 3 hours during daytime, in most cases, it is possible to restore the frequencies of 2.2 and 2.6 kHz. These frequencies are reliable benchmarks, allowing in some cases to restore the AMT curve using the correlation between amplitude and phase. We have proposed ways to improve data quality in the dead band when measured during the daytime.

How to cite: Ermolin E.Y., Ingerov O., Yankilevich A.A., Pokrovskaya N.N. AMT soundings in the dead band within the Chukotka region (Russian Far East) // Journal of Mining Institute. 2019. Vol. 236 . p. 125-132. DOI: 10.31897/PMI.2019.2.125
Geology
  • Date submitted
    1952-07-25
  • Date accepted
    1952-09-12
  • Date published
    1953-01-01

Types of quartz veins of the Urals and their crystal content

Article preview

Three systems of jointing cracks predominate in the rocks of the crystal-bearing strip of the Northern Urals: concordant, intersecting and transverse. Almost all crystal-bearing quartz veins of the Northern Urals are confined to these cracks. Among the quartz veins of the Northern Urals, the first two types are most common. Transverse quartz veins are less common. It should be noted that the division of quartz veins into the listed types is conditional, since they are all of the same age, genetically related and fulfill a system of three interconnected tectonic cracks

How to cite: Karyakin A.E. Types of quartz veins of the Urals and their crystal content // Journal of Mining Institute. 1953. Vol. 28 . p. 117-128.