-
Date submitted2019-05-24
-
Date accepted2019-09-08
-
Date published2020-02-25
Investigation of the influence of the length of the intermediate magnetic circuit on the characteristics of magnetic gripper for robotic complexes of the mining industry
The analysis of the existing systems of mechanical grippers of various operating principles and operating environments, in the design of which both soft and hard magnetic materials are executed. The characteristics of existing prototypes are shown and the results of our own research are presented. The article presents a study of the effect of the intermediate magnetic circuit length on the characteristics of magnetic gripper, the principle of which is based on the control of the field of a permanent magnet. The gripper based on this principle of action does not require constant energy expenditures to maintain both on and off states. The description of the magnetic gripper design and the design of the test bench is given, as well as the results of a series of experiments to determine the strength of the release of the gripper at different lengths of the magnetic circuit in the on and off states, followed by statistical processing of the data. The intervals of the ranges in which with a high degree of probability there will be a value of the gripping disengagement force for various lengths of the intermediate magnetic circuit are identified. The nature of the distribution of a random variable, which is the force of decoupling of the gripper, is determined. The dependences of the gripper decoupling force on the length of the intermediate magnetic circuit for each of the gripper states are constructed. It has been established that a decrease in the length of the intermediate magnetic circuit is the cause of a decrease in the gripping adhesion force. Plots of the dependence of the gripper decoupling force were constructed using the modes of the force values varieties to visually display the experimental results. The maximum adhesion force of magnetic pickup – 9.5 kg – was achieved with an intermediate magnetic core length of 50 mm, the minimum with a length of 25 mm – 5.6 kg.
-
Date submitted2019-07-11
-
Date accepted2019-09-02
-
Date published2019-12-24
Stakeholders management of carbon sequestration project in the state – business – society system
Prevention of catastrophic effects of climate change is one of the most pressing challenges of this century. A prominent place in the low-carbon development system today is carbon capture and storage technology (CCS). This technology can significantly reduce greenhouse gas emissions, leading to global warming. Effectiveness of technology has been proven through successful implementation of a number of CCS projects. CCS projects are implemented in the context of national and often international interests, consolidating efforts of many parties. Sequestration projects involve government bodies, public, industrial and scientific sectors, as well as a number of other business structures. Each participant presents his own expectations for results of the project, which can compete among themselves, creating threats to its successful implementation. World experience in implementing CCS projects indicates that opposition from a certain group of stakeholders can lead to closure of a project, therefore, interaction with environment is one of the key elements in managing such projects. This study focuses on specifics of stakeholder management in implementation of CO 2 sequestration projects. Based on the analysis of world experience, role of the state, business and society in such projects is determined, their main expectations and interests are summarized. The main groups of stakeholders of CCS and CCUS (carbon capture, utilization and storage) projects were identified, differences in their interests and incentives to participate were analyzed. It is proved that system of interaction with stakeholders should be created at the early stages of the project, while management of stakeholders is a continuous process throughout the life cycle. An author’s tool is proposed for assessing degree of stakeholder interest, the use of which allowed us to determine interaction vectors with various groups of stakeholders.
-
Date submitted2019-01-22
-
Date accepted2019-03-16
-
Date published2019-06-25
Key factors of public perception of carbon dioxide capture and storage projects
- Authors:
- S. V. Fedoseev
- Pavel S. Tcvetkov
One of the major challenges of the modern world is the problem of global warming, the solution of which requires the implementation of a set of strategic projects in the field of transition of the energy sector to the path of environmentally balanced development. One of the ways to implement this transition is the development of technologies for capturing and storage of technogenic carbon dioxide, which is recognized as the main one of greenhouse gases. At the same time, in the Russian context, the most expedient is the implementation of technological chains for capturing and storing CO 2 which are aimed at enhanced oil recovery, the effectiveness of which has been proven by world practice. Implementation of these projects requires consolidation of efforts of many parties, including government agencies, enterprises-issuers (power generating facilities and energy-intensive industry), oil-producing enterprises, non-state environmental organizations, media and public. World practice has many examples when uncoordinated actions of one of the stakeholders led to the closure of such a project, and therefore it is necessary to develop a mechanism of interaction between them, taking into account the specifics of Russian conditions. One of the least studied and controversial aspects of this interaction is to involve the public in the implementation of national carbon intensity programs and the local population in the implementation of a specific project. Research in this field has been conducted in the world over the past 14 years, which allowed the current research base to be used to develop fundamental principles for the development and promotion of CO 2 capture and storage technologies in Russia. Key factors affecting the perception of such projects by public were also analyzed and systematized. The research identified the main arguments for and against the development of CO 2 capture and storage technologies.