Submit an Article
Become a reviewer

Search articles for by keywords:
десорбция

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-06-17
  • Date accepted
    2024-07-17
  • Date published
    2025-04-25

Justification on the safe exploitation of closed coal warehouse by gas factor

Article preview

The annual increase of coal production and its demand lead to the necessity in temporary storage places (warehouses) organization to accommodate raw coal materials before the shipment. It is noted that at the open method of coal storing the dust emission from loading/unloading operations and from the pile surface effects negatively the health of the warehouse workers and adjacent territories. An alternative solution is closed-type warehouses. One of the main hazards of such coal storage can be the release of residual methane from coal segregates into the air after degassing processes during mining and extraction to the surface, as well as transportation to the place of temporary storage. The study carries the analysis of methane content change in coal during the processes of extraction, transportation and storage. Physical and chemical bases of mass transfer during the interaction between gas-saturated coal mass and air are studied. It is determined that the intensity of methane emission depends on: the coal seam natural gas content, parameters of mass transfer between coal, and air and the ambient temperature. The dynamics of coal mass gas exchange with atmospheric air is evaluated by approximate approach, which is based on two interrelated iterations. The first one considers the formation of methane concentration fields in the air space of the bulk volume and the second accounts the methane emission from the pile surface to the outside air. It is determined that safety of closed coal warehouses exploitation by gas factor can be ensured by means of artificial ventilation providing volumetric methane concentration in the air less than 1 %. The flow rate sufficient to achieve this methane concentration was obtained as a result of computer modeling of methane concentration fields formation in the air medium at theoretically calculated methane emission from the pile surface.

How to cite: Gendler S.G., Stepantsova A.Y., Popov M.M. Justification on the safe exploitation of closed coal warehouse by gas factor // Journal of Mining Institute. 2025. Vol. 272 . p. 72-82. EDN SIJDWE
Drilling
  • Date submitted
    2008-10-30
  • Date accepted
    2008-12-22
  • Date published
    2009-12-11

Investigations of the mechanism of methane desorption in coal saturation with carbon dioxide

Article preview

The article considers the developed unit for investigations of interaction between coal and gas, and gas outflow from the coal surface by gravimetric method under gas pressure up to 6 MPa. Relationship between the sorption ability and metamorphism stage is explained by the microstructure of coal. The adsorption increment indices of volume V and velocity of changes in pressure P – during adsorption may be used for prediction of outburst-hazard of coal and gas.

How to cite: Karmansky A.T. Investigations of the mechanism of methane desorption in coal saturation with carbon dioxide // Journal of Mining Institute. 2009. Vol. 183 . p. 285-288.