-
Date submitted2019-03-24
-
Date accepted2019-05-13
-
Date published2019-08-23
Calculation of Oil-saturated Sand Soils’ Heat Conductivity
- Authors:
- J. Sobota
- V. I. Malarev
- A. V. Kopteva
Nowadays, there are significant heavy high-viscosity oil reserves in the Russian Federation with oil recovery coefficient not higher than 0.25-0.29 even with applying modern and efficient methods of oil fields development. Thermal methods are the most promising out of the existing ways of development, main disadvantage of which is large material costs, leading to the significant rise in the cost of extracted oil. Thus, creating more efficient thermal methods and improving the existing ones, is the task of great importance in oil production. One of the promising trends in enhancing thermal methods of oil recovery is the development of bottomhole electric steam generators. Compared to the traditional methods of thermal-steam formation treatment, which involve steam injection from surface, well electrothermal devices can reduce energy losses and improve the quality of steam injected into the formation. For successful and efficient organization of oil production and rational development of high-viscosity oil fields using well electrothermal equipment, it is necessary to take into account the pattern of heat propagation, both in the reservoir and in the surrounding space, including the top and bottom. One of the main values characterizing this process is the heat conductivity λ of oil-bearing rocks. The article describes composition of typical oil-saturated sand soils, presents studies of heat and mass transfer in oil-saturated soils, reveals the effect of various parameters on the heat conductivity of a heterogeneous system, proposes a method for calculating the heat conductivity of oil-bearing soils by sequential reduction of a multicomponent system to a two-component system and proves the validity of the proposed approach by comparing acquired calculated dependencies and experimental data.
-
Date submitted2015-10-11
-
Date accepted2015-12-13
-
Date published2016-08-22
The specifics of operating minor deposits (as given by the examples of gas condensate deposits of the Northern Caucasus)
- Authors:
- R. A. Gasumov
One of the most important directions in upgrading well productivity in the process of mining hydrocarbons consists in fighting with salt formation and salt deposition. Solving that problem becomes especially actual when operating deposits that are in their final stage of exploitation in complex mining and geological conditions accompanied by deposition of salts in the well foot area of oil bed and their sedimentation on the sub-surface and surface equipment. It provokes a drop in well productivity and results in off-schedule repair works. Specifics are considered of exploiting minor gas condensate deposits of the Northern Caucasus that are operated under complicated mining and geological conditions of anomalously high bed pressures, high temperatures, strong depressions on the beds and inflow of mineralized water from water saturated seams. Processes are studied of salt deposition from heavy hydrocarbons in the well foot and the bed area surrounding it. Water sample analyses data from different wells have demonstrated that the main salts carrier is the associated water, and the principal sedimenting agents are corrosion products, as confirmed by the results of microscopic studies. The dynamics is presented of salt deposition in the “well foot – wellhead – separator” system retrieved from the results of studies of reaction products in the well foot zone of oil bed. It is demonstrated that the efficiency of struggling with salt deposition in the course of mining hydrocarbons depends on comprehensive approach to the problem, the principal thrust lying with prevention of such deposition. Possible ways are considered to prevent precipitation of ferric compounds in the course of operating gas condensate wells, a way is suggested to intensify gas inflow.
-
Date submitted2009-10-14
-
Date accepted2009-12-11
-
Date published2010-09-22
Investigation of present-day stress-strain state of rock mass by the results of observations at geodynamic polygons
- Authors:
- S. N. Savchenko
- E. V. Kasparyan
- Yu. G. Smagina
The methods are suggested for treatment of the results of optical distance and levelling measurements at the underground geodynamic polygons involving in their calculation the tensors of additional stresses and deformations, component of rotation and specific energy of deformability. As an example, consideration is given to changes in time of movements, deformations and specific energy of deformability at one of geodynamic polygons of the Kola peninsular.
-
Date submitted2009-08-23
-
Date accepted2009-10-05
-
Date published2010-02-01
Developing a rational technology of utilization оf bio and oil slimes of the Kinef Ltd by an extraction оf useful components
- Authors:
- K. A. Moiseeva
The paper deal with the problem of developing a rational technology of slime and silt recycling for company «KINEF», which nowadays is one of the leading companies in Russia in it area. Therefore the question of soil-waste utilization is one of the major issues to adress for this organisation. During the reaserch samples of soil waste were taken and analyised, which helped to work out a complite technology of recycling. Special attention is paid to the necessity of extraction of the useful components.