-
Date submitted2022-02-26
-
Date accepted2022-04-27
-
Date published2022-07-26
Type intrusive series of the Far East belt of lithium-fluoric granites and its ore content
- Authors:
- Viktor I. Alekseev
The evolution and ore content of granitoid magmatism in the Far East belt of lithium-fluoric granites lying in the Russian sector of the Pacific ore belt have been studied. Correlation of intrusive series in the Novosibirsk-Chukotka, Yana-Kolyma and Sikhote-Alin granitoid provinces of the studied region allowed to establish the unity of composition, evolution, and ore content of the Late Mesozoic granitoid magmatism. On this basis, a model of the type potentially ore-bearing intrusive series of the Far East belt of lithium-fluoric granites has been developed: complexes of diorite-granodiorite and granite formations → complexes of monzonite-syenite and granite-granosyenite formations → complexes of leucogranite and alaskite formations → complexes of rare-metal lithium-fluoric granite formation. The main petrological trend in granitoid evolution is increasing silicic acidity, alkalinity, and rare-metal-tin specialization along with decreasing size and number of intrusions. At the end of the intrusive series, small complexes of rare-metal lithium-fluoric granites form. The main metallogenic trend in granitoid evolution is an increasing ore-generating potential of intrusive complexes with their growing differentiation. Ore-bearing rare-metal-granite magmatism of the Russian Far East developed in the Late Cretaceous and determined the formation of large tungsten-tin deposits with associated rare metals: Ta, Nb, Li, Cs, Rb, In in areas with completed intrusive series. Incompleteness of granitoid series of the Pacific ore belt should be considered as a potential sign of blind rare-metal-tin mineralization. The Far East belt of lithium-fluoric granites extends to the Chinese and Alaskan sectors of the Pacific belt, which allows the model of the type ore-bearing intrusive series to be used in the territories adjacent to Russia.
-
Date submitted2015-10-08
-
Date accepted2015-12-11
-
Date published2016-08-22
Rare metal granites in the structures of the Russian sector of Pacific ore belt
- Authors:
- V. I. Alekseev
Data are presented on the geology of areas of rare metal granites proliferation in the Russian sector of the Pacific Ore Belt that make one take a fresh look at the East Asian granitoid area to update its metallogeny. History is reviewed of studying rare metal granites of the Russian Far East. As a rule, these are found in the vicinity of major tungsten-stanniferous ore deposits, except much later than discovering the former, at the stages of their assessment and survey. Rare earth granites are usually missed by the geologists during the early stages of regional geological surveys due to their small size, weak eroding and external similarity with earlier granites. Using the examples of the Central Polousny, Badzhal and Kuyviveem-Pyrekakay regions the structural and geological conditions are characterized of localization of rare metal granites. Comparative analysis of geological situations made it possible to formulate the areal character of manifestation of rare metal granites; their confinedness to late Mesozoic orogenic arched uplifts of bogen structures above deep granitoid batholiths; positioning in the areas where longitudinal and transversal deep laying faults cross; gravitation to the environs of pre-Cambrian median masses.
-
Date submitted2008-10-22
-
Date accepted2008-12-14
-
Date published2009-12-11
Peculiarities of structure and comparative analysis of oil-and-gas basins in the Pacific segment of lithosphere
- Authors:
- V. B. Archegov
Comparative analysis was carried out for oil-and-gas-bearing basins of young and oldland platforms of the Pacific segment. Previously the same kind of analysis had been realized for the Atlantic segment of lithosphere. Obtained results confirm the unique geological structure and oil-and-gas capacity of Siberian platform, by these features it differs from all other cratons in the whole world.