Submit an Article
Become a reviewer
Vol 212
Pages:
122-129
Download volume:
RUS
Article

Numerical methods of validity estimation of electromagnetic sounding data interpretation results

Authors:
M. I. Shimelevich1
E. A. Obornev2
I. E. Obornev3
E. A. Rodionov4
About authors
  • 1 — Ph.D. Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University (MSU SINP)
  • 2 — Ph.D. Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University (MSU SINP)
  • 3 — Ph.D. Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University (MSU SINP)
  • 4 — post-graduate student Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University (MSU SINP)
Date submitted:
2014-08-30
Date accepted:
2014-10-26
Date published:
2015-04-10

Abstract

The article deals with a priori and a posteriori characteristics of a degree of practical stability (practical uniqueness) of solutions to nonlinear inverse problems in geoelectrics. Numerical values of moduli of continuity of direct and inverse operators and their modifications are used as criteria of a degree of practical stability. Examples of calculation of a priori and a posteriori characteristics of a degree of practical stability of inverse problems for standard models which are used in geoelectrics are given. A dependence of characteristics of a degree of practical stability on accuracy of a descrip-tion and on input data structure, volume and level of error is examined. The obtained numerical esti-mations of a degree of practical stability of approximate solutions to inverse problems do not depend on the algorithm applied for their solving. This allows estimating accuracy and reliability of the geo-physical data interpretation results objectively.

Область исследования:
(Archived) Application of up-to-date electric exploration technologies in mineral deposits prospecting
Keywords:
inverse problems geoelectrics neural networks a priori estimates a posteriori estimates
Go to volume 212

References

  1. Shimelevich M.I., Obornev E.A., Obornev I.E., Rodionov E.A. Apriornye ocenki stepeni prakticheskoj neodnoznachnosti reshenij obratnyh zadach eojelektriki (Priori assessment of the practical solutions of inverse problems of ambiguity geoelectrics). Materialy 39-i sessii Mejdunarodnogo nauchnogo seminara im. D.G.Uspenskogo. Voronezh: Izd-vo Voronezh. gos. un-ta, 2012, p. 283-286.
  2. Berdichevsky M.N., Dmitriev V.I. Ob obratnyh zadachah v geojelektrike (On inverse problems in geoelectrics). Chapter 8 of the book: Svetov B.S. Osnovy geoelektriki. Moscow: Izd-vo LKI, 2008, p. 656.
  3. Goncharskiy A.V., Yagola A.G. O ravnomernom priblizhenii monotonnyh reshenij nekorrektnyh zadach (Uniform approximation of monotonic solutions to incorrect problems). Dokl. AN SSSR. 1969. 184, N 4, p. 771-773.
  4. Zhdanov M.S. Teorija obratnyh zadach i reguljarizacii v geofizike (The theory of inverse problems and regularization in geophysics). Moscow: Nauchnyi mir. 2007, p. 712.
  5. Ivanov V.K. O nekorrektno postavlennyh zadachah (On improperly posed problems). Matematicheskiy sbornik. 1963. T. 61(103) № 2. p. 211-223.
  6. Lavrentyev M.M, Romanov V.G., Shishatskiy S.P. Nekorrektnye zadachi matematicheskoj fiziki i analiza (Improperly posed problems of mathematical physics and analysis). Moscow: Nauka, 1980, p. 286.
  7. Novik O.B. Matematicheskie voprosy sokrashhenija chislovoj geofizicheskoj informacii pri poiskah nefti i gaza (Mathematical problems in the reduction of the number of geophysical data necessary for oil and gas exploration). Moscow. geologorazved. ins-t. Dep v VIEMS 02.11.87 N 485-MG.
  8. Shimelevich M.I., Obornev E.A., Obornev I.E., Rodionov E.A. Numerical methods for estimating the degree of practical stability of inverse problems in geoelectrics. Izvestiya. Physics of the Solid Earth. 2013. Vol.49. N 3, p. 356-362.
  9. Shimelevich M.I., Obornev E.A., Obornev I.E., Rodionov E.A. Chislennye metody ocenki stepeni ustojchivosti obratnyh zadach geojelektriki v konechno-parametricheskih klassah sred (Numerical methods for assessing the stability of inverse problems of geoelectrics in finite-parameter class of environment). Materialy Pyatoi vserossiiskoi shkoly-seminara imeni M.N.Berdichevskogo i L.L.Vanyana po elektromagnitnym zondirovaniyam Zemli – EMZ-2011. St Peterburg: Izd-vo SPbGU. 2011. Vol.2, p. 139-141.
  10. Tihonov A.N., Goncharskiy A.V., Stepanov V.V., Yagola A.G. Chislennye metody reshenija nekorrektnyh zadach (Numerical methods for solving improperly posed problems). Moscow: Nauka, 1990, p. 232.
  11. Shimelevich M.I., Obornev E.A. An approximation method for solving the inverse MTS problem with the use of neural networks. Izvestiya. Physics of the Solid Earth. 2009. Vol.45, N 12, p. 1055-1071.
  12. Shimelevich M.I, Obornev E.A. Nejrosetevoj metod magnitotelluricheskogo monitoringa geojelektricheskih parametrov sredy na osnove nepolnyh dannyh (Neuronet metod of magnetotelluric monitoring of geoelectrical parameters on the base of incomplete data). Vestnik KRAUNC, Nauki o Zemle. 2008. N 1, iss.11, p.62-67.

Similar articles

On the features of the complex orthambonites pander – orthis dalman (brachiopoda) of the lost outcrops ordovician sediments on the river Pulkovka (Leningrad region)
2015 M. G. Tsinkoburova, D. V. Bezgodova
Oil and gas exploration strategy in evaluation of fuel and energy potential of Russian arctic shelf
2015 V. B. Archegov, Yu. V. Nefedov
Far east belt of lithium-fluoric granites, ongonites and tin ore zwitters
2015 V. I. Alekseev
Application of vertical magnetic component in magnetotelluric method to estimate parameters of anomalous objects away from the profile line
2015 E. Yu. Ermolin, A. I. Ingerov, Kh. M. Shaaban
Application of the time-domain electromagnetic method for shallow groundwater prospecting IN Itay El-Baroud area, Nile Delta (Egypt)
2015 Kh. M. Shaaban, Kh. Gazala, E. Al-Saied, G. El-Qady
Potential of river electrical exploration in oil regions of the siberian platform (the Lena river area, Krivolukskaya area)
2015 N. N. Nevedrova, A. M. Sanchaa, S. M. Babushkin, D. V. Krechetov