Submit an Article
Become a reviewer
Vol 213
Pages:
36
Download volume:
RUS

Methods of evaluation of vibrational activity of power plants using the similarity theory and dimensional analysis

Authors:
O. K. Bezyukov1
O. V. Afanaseva2
About authors
  • 1 — National Mineral Resources University (Mining University)
  • 2 — National Mineral Resources University (Mining University)
Date submitted:
2014-09-19
Date accepted:
2014-11-09
Date published:
2015-03-01

Abstract

The level and the nature of changes of vibrational parameters are one of the most important indicators of the technical state of diesel engines as the most sensitive to various derivations from nor-mal technical condition.  This article discusses methods of assessment of vibration activity of engines generated by gasdynamic and mechanical factors.  The possibility of using the methods of similarity theory and dimensional analysis in the development of new and improvement of existing methods of vibrational diagnostic of internal combustion engines, which significantly increases the informativeness of vibrational diagnostic of the engine.These criteria allows to simulate and study the impact of gas dynamic processes in combustion of fuel on the vibration of internal combustion engines, consider the impact on the relocation of the piston on the vibration activity of diesel and dependence of vibration velocity on the density of the material and to carry out measurements of vibration velocity on the surface of the cylinder block.  The methods, that authors propose, are the basis for methods of determining of vibrational activity of dieselengines, are adequate to complexity of this process and to possibilities of measurement equipment.

Go to volume 213

References

  1. Афанасьева О.В. Вибродиагностирование технического состояния судовых дизелей по критериям подобия: Автореф. дис…канд. техн. наук / Санкт-Петербургский государственный университет водных коммуникаций. СПб, 2004. 23 с.
  2. Безюков О.К. Безразмерные комплексы для оценки виброактивности судовых дизелей / О.К.Безюков, О.В.Афанасьева // Эксплуатация морского транспорта. 2008. № 4. С.56-59.
  3. Ионов А.В. Средства снижения вибрации на судах / Центральный научно-исследовательский институт им. акад. А.Н.Крылова. СПб, 2000. 348 с.
  4. Стратегия развития судостроительной промышленности на период до 2020 года и дальнейшую перспективу // Судостроение. 2007. № 6. С.7-11, 30-34, 44-47.
  5. Тузов Л.В. Вибрация судовых двигателей внутреннего сгорания / Л.В.Тузов, О.К.Безюков, О.В.Афанасьева. СПб: Изд-во Политехнического ун-та, 2012. 348 с.
  6. Bezyukov O.K., Afanasyeva O.V. Protection methods for ship crew and passengers against the vibration of power plants // Life Science Journal, 2014. № 11(5). P.483-486.
  7. Bezyukov O.K., Zhukov V.A., Zhukova O.V. Effectiveness of Liquid Cooling Systems in Motors and Manufacturing Equipment // Russian Engineering Research, 2008. № 28(11). P.1055-1057.
  8. Di Carlo A.L., White N.C., Litovitz T.A. Mechanical and Electromagnetic Induction of Protection Against Oxidative Stress // Bioelectrochemistry. 2001. Vol.53(1). P.87-95.
  9. Ferro V. Deducing the Usle Mathematical Structure by Dimensional Analysis and Self-Similarity Theory // Biosys-tems Engineering, 2010. № 106(2). Р.216-220.
  10. Hekl M. The reference book on engineering acoustic / M.Hekl, H.A.Muller // Shipbuilding, 1980. P.440.
  11. Ionov A.V., Buvailo L.E., Volkova M.V., Starostin A.P. Elastomer Materials in Ship Vibration and Noise Protection Means // Russian Journal of General Chemistry, 2010. Vol.80(10). P.2122-2133.
  12. Larin V.B. Some Optimization Problems for Vibroprotective Systems // International Applied Mechanics, 2001. Vol.37(4). P.456-483.
  13. Putintsev S.V., Antonuk P.N., Chirsky S.P. The use of the similarity theory for modeling and forecasting mechani-cal losses in piston engine// Dvigatelestroyenie, 2011. Issue 3 (245). P.3-6.
  14. Scuria-Fontana C. Fighting Vibration with Vibration // Mechanical Engineering, 1994. Vol.116(9). P.38.
  15. Serdobintsev Yu.P., Ivannikov A.V. Force, Geometric and Design Factors at Accelerated Wear Tests // Journal of Friction and Wear, 1997. Vol.18(4). P.25-28.

Similar articles

Navigation and time support management systems by highly dynamic moving objects
2015 D. A. Pervukhin, S. V. Kolesnichenko
Evgraf Stepanovich Fedorov – scientist, teacher, administrator
2015 V. N. Shaidurov
Forecasting changes in the chemical composition of reservoir waters in the course of oil production according to the results of thermodynamic modelling
2015 S. M. Sudarikov, E. N. Saveleva
Development of the stepper motor control system in steam generating units
2015 A. L. Lyashenko, I. M. Pershin
The possibility to predict the oil and gas price crisis in the world market on the basis of the correlation analysis
2015 V. A. Lebedev, B. I. Spesivtsev
Environmentally safe methods of technogenic deposits conservation
2015 M. A. Pashkevich