Submit an Article
Become a reviewer

Comprehensive studies of the snow-firn layer in the area of the Russian Antarctic Vostok Station

Authors:
Aleksei V. Bolshunov1
Sergei A. Ignatev2
Gleb D. Gorelik3
Nikita S. Krikun4
Dmitrii A. Vasilev5
Ilya V. Rakitin6
Vyacheslav S. Shadrin7
About authors
  • 1 — Ph.D. Scientific Supervisor of the Laboratory Empress Catherine ΙΙ Saint Petersburg Mining University ▪ Orcid
  • 2 — Ph.D. Head of Department Empress Catherine ΙΙ Saint Petersburg Mining University ▪ Orcid
  • 3 — Ph.D. Associate Professor Empress Catherine ΙΙ Saint Petersburg Mining University ▪ Orcid
  • 4 — Leading Engineer Empress Catherine ΙΙ Saint Petersburg Mining University ▪ Orcid
  • 5 — Ph.D. Assistant Lecturer Empress Catherine ΙΙ Saint Petersburg Mining University ▪ Orcid
  • 6 — Postgraduate Student Empress Catherine ΙΙ Saint Petersburg Mining University ▪ Orcid
  • 7 — Postgraduate Student Empress Catherine ΙΙ Saint Petersburg Mining University, ▪ Orcid
Date submitted:
2024-04-27
Date accepted:
2024-11-07
Online publication date:
2025-03-05

Abstract

The article presents the findings from research conducted at Vostok Station during the 69th Russian Antarctic expedition. The primary goal of the research is to perform a thorough investigation of the snow-firn layer using both direct (drilling and core analysis) and indirect (georadiolocation and seismic exploration) methods. As part of the research, fundamental tasks related to the study of the structure and dynamics of the upper part of the ice sheet were addressed, as well as applied tasks aimed at justifying the depth of explosive charge placement for seismic work with the goal of conducting a detailed study of Lake Vostok and selecting the point for drilling access to the lake. Data on the microstructure and physical properties of the snow-firn layer were collected. The findings will allow for future improvements to the firn densification model, which is required to understand the evolution of ice grains during the early stages of metamorphism. The study's findings aided in the understanding of the structural features of the ice sheet's surface layer, allowing for more precise determination of the structural and physical characteristics of the snow-firn layer and ice, potentially leading to a better understanding of climatic and geological processes in Antarctica.

Keywords:
Antarctica Vostok Station snow-firn layer seismic studies georadiolocation studies drilling interdisciplinary links
Online First

References

  1. Попов С.В. Шесть десятилетий радиолокационных и сейсмических исследований в Антарктиде // Лед и Снег. 2021. Т. 61. № 4. C. 587-619. DOI: 10.31857/S2076673421040110
  2. Morlighem M., Rignot E., Binder T. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet // Nature Geoscience. 2020. Vol. 13. № 2. P. 132-137. DOI: 10.1038/s41561-019-0510-8
  3. Livingstone S.J., Yan Li, Rutishauser A. et al. Subglacial lakes and their changing role in a warming climate // Nature Reviews Earth & Environment. 2022. Vol. 3. № 2. P. 106-124. DOI: 10.1038/s43017-021-00246-9
  4. Frémand A.C., Fretwell P., Bodart J.A. et al. Antarctic Bedmap data: Findable, Accessible, Interoperable, and Reusable (FAIR) sharing of 60 years of ice bed, surface, and thickness data // Earth System Science Data. 2023. Vol. 15. Iss. 7. P. 2695-2710. DOI: 10.5194/essd-15-2695-2023
  5. Попов С.В., Черноглазов Ю.Б. Подледниковое озеро Восток, Восточная Антарктида: береговая линия и окружающие водоемы // Лед и Снег. 2011. № 1 (113). С. 13-24.
  6. Попов С.В., Масолов В.Н., Лукин В.В., Попков А.М. Отечественные сейсмические, радиолокационные и сейсмологические исследования подледникового озера Восток // Лед и Снег. 2012. Т. 52. № 4. С. 31-38. DOI: 10.15356/2076-6734-2012-4-31-38
  7. Litvinenko V.S., Leitchenkov G.L., Vasiliev N.I. Anticipated sub-bottom geology of Lake Vostok and technological approaches considered for sampling // Geochemistry. 2020. Vol. 80. Iss. 3. № 125556. DOI: 10.1016/j.chemer.2019.125556
  8. Сербин Д.В., Дмитриев А.Н. Экспериментальные исследования теплового способа бурения плавлением скважины в ледовом массиве с одновременным контролируемым расширением ее диаметра // Записки Горного института. 2022. Т. 257. С. 833-842. DOI: 10.31897/PMI.2022.82
  9. Litvinenko V. Foreword: Sixty-year Russian history of Antarctic sub-glacial lake exploration and Arctic natural resource development // Geochemistry. 2020. Vol. 80. Iss. 3. № 125652. DOI: 10.1016/j.chemer.2020.125652
  10. Salamatin A.N., Lipenkov V.Ya., Barnola J.M. et al. Snow/Firn Densification in Polar Ice Sheets // Low Temperature Science. 2009. Vol. 68 (Suppl. Iss.). P. 195-222.
  11. Salamatin A.N., Lipenkov V.Ya., Barnola J.M. et al. Basic approaches to dry snow-firn densification modeling // Материалы гляциологических исследований. 2006. Вып. 101. С. 3-16 (in English).
  12. Salamatin A.N., Lipenkov V.Ya. Simple relations for the close-off depth and age in dry-snow densification // Annals of Glaciology. 2008. Vol. 49. P. 71-76. DOI: 10.3189/172756408787814889
  13. Gascon G., Sharp M., Burgess D. et al. How well is firn densification represented by a physically based multilayer model? Model evaluation for Devon Ice Cap, Nunavut, Canada // Journal of Glaciology. 2014. Vol. 60. № 222. P. 694-704. DOI: 10.3189/2014JoG13J209
  14. Alley R.B. Firn densification by grain-boundary sliding: a first model // Journal de Physique Colloques. 1987. Vol. 48. № C1. P. 249-254. DOI: 10.1051/jphyscol:1987135
  15. Alley R.B. Flow-law hypotheses for ice-sheet modeling // Journal of Glaciology. 1992. Vol. 38. № 129. P. 245-256. DOI: 10.3189/S0022143000003658
  16. Davis R.E., Arons E.M., Albert M.R. Metamorphism of Polar Firn: Significance of Microstructure in Energy, Mass and Chemical Species Transfer // Chemical Exchange Between the Atmosphere and Polar Snow. Springer, 1996. Vol. 43. P. 379-401. DOI: 10.1007/978-3-642-61171-1_17
  17. Alley R.B., Woods G.A. Impurity influence on normal grain growth in the GISP2 ice core, Greenland // Journal of Glaciology. 1996. Vol. 42. № 141. P. 255-260. DOI: 10.3189/S0022143000004111
  18. Cuffey K.M., Thorsteinsson T., Waddington E.D. A renewed argument for crystal size control of ice sheet strain rates // Journal of Geophysical Research: Solid Earth. 2000. Vol. 105. № B12. P. 27889-27894. DOI: 10.1029/2000JB900270
  19. Сербин Д.В., Дмитриев А.Н., Васильев Н.И. Устройство для бурения плавлением с одновременным или последующим расширением скважин во льду // Науки о Земле и недропользование. 2021. Т. 44. № 3. С. 333-343. DOI: 10.21285/2686-9993-2021-44-3-333-343
  20. Сербин Д.В. Предотвращение образования эмульсии при вскрытии подледниковых водоемов // Известия Уральского государственного горного университета. 2021. Вып. 3 (63). С. 80-88. DOI: 10.21440/2307-2091-2021-3-80-88
  21. Kadochnikov V.G., Dvoynikov M.V. Development of Technology for Hydromechanical Breakdown of Mud Plugs and Improvement of Well Cleaning by Controlled Buckling of the Drill String // Applied Science. 2022. Vol. 12. Iss. 13. № 6460. DOI: 10.3390/app12136460
  22. Veres A.N., Ekaykin A.A., Golobokova L.P. et al. A record of volcanic eruptions over the past 2,200 years from Vostok firn cores, central East Antarctica // Frontiers in Earth Science. 2023. Vol. 11. № 1075739. DOI: 10.3389/feart.2023.1075739
  23. Екайкин А.А., Чихачев К.Б., Верес А.Н. и др. Профиль плотности снежно-фирновой толщи в районе станции Восток, Центральная Антарктида // Лед и Снег. 2022. Т. 62. № 4. С. 504-511. DOI: 10.31857/S2076673422040147
  24. Верес А.Н., Екайкин А.А., Липенков В.Я. и др. Первые данные о климатической изменчивости в районе ст. Восток (Центральная Антарктида) за последние 2000 лет по результатам изучения снежно-фирнового керна // Проблемы Арктики и Антарктики. 2020. Т. 66. № 4. С. 482-500. DOI: 10.30758/0555-2648-2020-66-4-482-500
  25. Пащенко Ф.А., Харьков Н.С., Сидоренко А.А., Гарбузов В.В. Уплотнение снежного основания зимовочного комплекса станции «Восток» // Строительная механика инженерных конструкций и сооружений. 2023. Т. 19. № 3. C. 285-301. DOI: 10.22363/1815-5235-2023-19-3-285-301
  26. Banfi F., De Michele C. A local model of snow–firn dynamics and application to the Colle Gnifetti site // The Cryosphere. 2022. Vol. 16. Iss. 3. P. 1031-1056. DOI: 10.5194/tc-16-1031-2022
  27. Sayers C.M. Porosity dependence of elastic moduli of snow and firn // Journal of Glaciology. 2021. Vol. 67. № 265. P. 788-796. DOI: 10.1017/jog.2021.25
  28. Thomas E.R., Vladimirova D.O., Tetzner D.R. et al. Ice core chemistry database: an Antarctic compilation of sodium and sulfate records spanning the past 2000 years // Earth System Science Data. 2022. Vol. 15. Iss. 6. P. 2517-2532. DOI: 10.5194/essd-15-2517-2023
  29. Steig E.J., Fischer H., Fisher D. et al. White paper: The IPICS 2k Array: a network of ice core climate and climate forcing records for the last two millennia // International Partnerships in Ice Core Sciences. 2006. 4 p.
  30. Kohnen H. On the Relation between Seismic Velocities and Density in Firn and Ice // Zeitschrift für Geophysik. 1972. Band 38. Heft 1. P. 925-935.
  31. Picotti S., Carcione J.M., Pavan M. Seismic attenuation in Antarctic firn // The Cryosphere. 2024. Vol. 18. Iss. 1. P. 169-186. DOI: 10.5194/tc-18-169-2024
  32. Масолов В.Н., Лукин В.В., Шереметьев А.Н., Попов С.В. Геофизические исследования подледникового озера Восток в Восточной Антарктиде // Доклады Академии наук. 2001. Т. 379. № 5. С. 680-685.
  33. Gillet F., Donnou D., Girard C. et al. Ice core quality in electromechanical drilling // Proceedings of the Second International Workshop/Symposium on Ice Drilling Technology, 30-31 August 1982, Calgary, AB, Canada. Hanover: Cold Regions Research and Engineering Laboratory, 1984. CRREL Special Report 84-34. P. 73-80.
  34. Sirotkin A.N., Talovina I.V., Duryagina A.M. Mineralogy and geochemistry of alkaline lamprophyres of north-western Spitsbergen (Svalbard) // Geochemistry. 2020. Vol. 80. Iss. 3. № 125508. DOI: 10.1016/j.chemer.2019.04.004
  35. Iliescu D., Baker I., Hui Chang. Determining the orientations of ice crystals using electron backscatter patterns // Microscopy Research and Technique. 2004. Vol. 63. Iss. 4. P. 183-187. DOI: 10.1002/jemt.20029
  36. Iliescu D., Baker I., Daghlian C.P. Orientation Mapping in Polycrystalline Ice Using Electron Backscatter Patterns // Microscopy and Microanalysis. 2005. Vol. 11. Suppl. 2. P.1500-1501. DOI: 10.1017/S1431927605505452
  37. Baker I., Obbard R., Iliescu D., Meese D. Microstructural characterization of firn // Hydrological Processes. 2007. Vol. 21. Iss. 12. P. 1624-1629. DOI: 10.1002/hyp.6725
  38. Липенков В.Я., Полякова Е.В., Екайкин А.А. Закономерности формирования конжеляционного льда над подледниковым озером Восток // Лед и Снег. 2012. Т. 52. № 4. С. 65-77. DOI: 10.15356/2076-6734-2012-4-65-77
  39. Lipenkov V.Ya., Salamatin A.N., Duval P. Bubbly-ice densification in ice sheets: II. Applications // Journal of Glaciology. 1997. Vol. 43. № 145. P. 397-407. DOI: 10.3189/S0022143000034973
  40. Большунов А.В., Васильев Д.А., Дмитриев А.Н. и др. Результаты комплексных экспериментальных исследований на станции Восток в Антарктиде // Записки Горного института. 2023. Т. 263. С. 724-741.
  41. Abdrakhmanov I.A., Gulbin Y.L., Skublov S.G., Galankina O.L. Mineralogical Constraints on the Pressure-Temperature Evolution of Granulites in the Bunger Hills, East Antarctica // Minerals. 2024. Vol. 14. Iss. 5. № 488. DOI: 10.3390/min14050488
  42. Шумский П.А. Основы структурного ледоведения. Петрография пресного льда как метод гляциологического исследования. М.: Изд-во Академии наук СССР, 1955. 492 с.
  43. Litvinenko V., Trushko V. Modelling of geomechanical processes of interaction of the ice cover with subglacial Lake Vostok in Antarctica // Antarctic Science. 2025. Vol. 37. P. 39-48. DOI: 10.1017/S0954102024000506

Similar articles

Thyristor booster device for voltage fluctuation reduction in power supply systems of ore mining enterprises
2025 Elena Nikolaevna Sosnina, Anatolii A. Asabin, Rustam Sh. Bedretdinov, Evgenii V. Kryukov, Daniil A. Gusev
Public-private partnership in the mineral resources sector of Russia: how to implement the classical model?
2025 Sergei M. Lavlinskii, Artem A. Panin, Aleksandr V. Plyasunov
Comparative analysis of nitrogen and carbon isotopic fractionation during diamond formation based on β-factor determination
2024 Dmitrii P. Krylov
Justification on the safe exploitation of closed coal warehouse by gas factor
2024 Semen G. Gendler, Anastasiya Yu. Stepantsova, Mikhail M. Popov
Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation
2025 Sergei N. Popov, Sergei E. Chernyshov, Xiaopu Wang
Methodology for managing energy development of production facilities in the gas industry
2024 Anatolii A. Shapovalo