Submit an Article
Become a reviewer
Vol 267
Pages:
356-371
Download volume:

Organotin pollutants in emerging coastal-marine sediments of the Kaliningrad shelf, Baltic Sea

Authors:
Zoya A. Zhakovskaya1
Galina I. Kukhareva2
Polina V. Bash3
Daria V. Ryabchuk4
Alexander Yu. Sergeev5
About authors
  • 1 — Ph.D. Leading Researcher Saint Petersburg Federal Research Center of the RAS ▪ Orcid ▪ Scopus
  • 2 — Researcher Saint Petersburg Federal Research Center of the RAS ▪ Orcid ▪ Scopus
  • 3 — Junior Researcher Saint Petersburg Federal Research Center of the RAS ▪ Orcid
  • 4 — Ph.D. Head of Department A.P.Karpinsky Russian Geological Institute ▪ Orcid ▪ Scopus
  • 5 — Ph.D. Senior Researcher A.P.Karpinsky Russian Geological Institute ▪ Orcid ▪ Scopus
Date submitted:
2024-03-30
Date accepted:
2024-06-13
Date published:
2024-07-04

Abstract

Based on two years of monitoring of modern bottom sediments of two sections of the Kaliningrad shelf of the Baltic Sea – “Curonian Spit” and “Northern Sambian” – an assessment of the sources of pollution with organotin compounds (OTs) and heavy metals was carried out. The content of individual organotin compounds and OTCs spectra obtained by gas chromatography with mass spectrometry of relatively coarse-grained bottom sediments indicate the presence of organotins in significant quantities – the total OTs content (ΣOTs) is from 0.6 to 8.3 ng/g. However, the content of tributyltin (TBT), the main component of anti-fouling systems for marine vessels and the most dangerous endocrine-disrupting compound among the hazardous substances for marine ecosystems, is at a low level (0-2.3 ng/g) in all studied samples and has not increased over the two-year observation period (biodegradation index 1.7-12.4). At the same time, the presence of abnormally high concentrations of mono-, triphenyl- and tricyclohexyltin in the sediments of the ”Northern Sambian” site (up to 30, 7 and 6.4 ng/g, respectively) indicates an additional source of pollution of coastal waters and shelf sediments (for example, plastic litter and agricultural runoff). The absence of significant shipping in the study areas ensures a consistently low level of pollution with tributyltin and its derivatives (less than 0.3 and 2.3 ng/g of TBT in 2017 and less than 0.1 and 1.3 ng/g in 2018 for the sites “Curonian Spit” and “Northern Sambian”, respectively), which indicates the activity of the processes of TBT transformation and self-cleaning of sandy sediments. However, the identified trends and their predictive accuracy require long-term observation and monitoring of the sediment environment using data on the deep-water part of the shelf, enriched in clay and humus components.

Keywords:
organotin compounds tributyltin bottom sediments Curonian Spit Baltic Sea
Go to volume 267

References

  1. Duaa G., Zahraa R., Emad Y. A Review of Organotin Compounds: Chemistry and Applications // Archives of Organic and Inorganic Chemical Sciences. 2018. Vol. 3. Iss. 3. P. 344-352. DOI: 10.32474/AOICS.2018.03.000161
  2. de Oliviera D.D., Rojas E.G., dos Santos Fernandez M.A. Should TBT continue to be considered an issue in dredging port areas? A brief review of the global evidence // Ocean & Coastal Management. 2020. Vol. 197. № 105303. DOI: 10.1016/j.ocecoaman.2020.105303
  3. Jokšas K., Stakėnienė R., Raudonytė-Svirbutavičienė E. On the effectiveness of tributyltin ban: Distribution and changes in butyltin concentrations over a 9-year period in Klaipėda Port, Lithuania // Ecotoxicology and Environmental Safety. 2019. Vol. 183. № 109515. DOI: 10.1016/j.ecoenv.2019.109515
  4. Uc-Peraza R.G., Castro Í.B., Fillmann G. An absurd scenario in 2021: Banned TBT-based antifouling products still available on the market // Science of The Total Environment. 2022. Vol. 805. № 150377. DOI: 10.1016/j.scitotenv.2021.150377
  5. Beyer J., Song Y., Tollefsen K.E. et al. The ecotoxicology of marine tributyltin (TBT) hotspots: A review // Marine Environmental Research. 2022. Vol. 179. № 105689. DOI: 10.1016/j.marenvres.2022.105689
  6. Lagadic L., Katsiadaki I., Biever R. et al. Tributyltin: Advancing the Science on Assessing Endocrine Disruption with an Unconventional Endocrine-Disrupting Compound / Reviews of Environmental Contamination and Toxicology. Cham: Springer, 2018. Vol. 245. P. 65-127. DOI: 10.1007/398_2017_8
  7. Khanam M.R.M., Shimasaki Y., Hosain M.Z. et al. Effects of the antifouling agent tributyltin on the sinking behavior, photo-synthetic rate and biochemical composition of the marine planktonic diatom Thalassiosira pseudonana // Ecotoxicology. 2022. Vol. 31. Iss. 7. P. 1158-1168. DOI: 10.1007/s10646-022-02577-9
  8. Sheng-Nan Shu, Rui-Tong Jiang, Jie Yin et al. Characteristics, sources and health risks of organotin compounds in marine organisms from the seas adjacent to the eastern ports of China // Regional Studies in Marine Science. 2023. Vol. 61. № 102929. DOI: 10.1016/j.rsma.2023.102929
  9. Suzdalev S., Gulbinskas S., Blažauskas N. Distribution of tributyltin in surface sediments from transitional marine-lagoon system of the south-eastern Baltic Sea, Lithuania // Environmental Science and Pollution Research. 2015. Vol. 22. Iss. 4. P. 2634-2642. DOI: 10.1007/s11356-014-3521-4
  10. Warford L., Mason C., Lonsdale J. et al. A reassessment of TBT action levels for determining the fate of dredged sediments in the United Kingdom // Marine Pollution Bulletin. 2022. Vol. 176. № 113439. DOI: 10.1016/j.marpolbul.2022.113439
  11. Bandara K.R.V., Chinthaka S.D.M., Yasawardene S.G., Manage P.M. Modified, optimized method of determination of Tributyltin (TBT) contamination in coastal water, sediment and biota in Sri Lanka // Marine Pollution Bulletin. 2021. Vol. 166. № 112202. DOI: 10.1016/j.marpolbul.2021.112202
  12. Quintas P.Y., Alvarez M.B., Arias A.H. et al. Spatiotemporal distribution of organotin compounds in the coastal water of the Bahía Blanca estuary (Argentina) // Environmental Science and Pollution Research. 2019. Vol. 26. Iss. 8. P. 7601-7613. DOI: 10.1007/s11356-019-04181-7
  13. Kucklick J.R., Ellisor M.D. A review of organotin contamination in arctic and subarctic regions // Emerging Contaminants. 2019. Vol. 5. P. 150-156. DOI: 10.1016/j.emcon.2019.04.003
  14. Abraham M., Westphal L., Hand I. et al. TBT and its metabolites in sediments: Survey at a German coastal site and the central Baltic Sea // Marine Pollution Bulletin. 2017. Vol. 121. Iss. 1-2. P. 404-410. DOI: 10.1016/j.marpolbul.2017.06.020
  15. Filipkowska A., Kowalewska G. Butyltins in sediments from the Southern Baltic coastal zone: Is it still a matter of concern, 10 years after implementation of the total ban? // Marine Pollution Bulletin. 2019. Vol. 146. P. 343-348. DOI: 10.1016/j.marpolbul.2019.06.050
  16. Метелькова Л.О., Жаковская З.А., Мамонтова В.Н., Кухарева Г.И. Органические соединения олова в воде и донных отложениях Финского залива и р. Невы // Вода: химия и экология. 2017. № 3. С. 70-82.
  17. Mil-Homens M., Almeida C.M.R., Dias S. et al. Spatial distribution and temporal trends of butyltin compounds (TBT, DBT & MBT) in short sediment cores of the SW Portuguese Shelf (western Iberian Margin, NE Atlantic) // Science of The Total Environment. 2023. Vol. 900. № 165872. DOI: 10.1016/j.scitotenv.2023.165872
  18. Zhakovskaya Z., Metelkova L., Kukhareva G. et al. Mobility of metal-organic pollutants in the emerging coastal-marine sediment of the Baltic Sea: The case-example of organotin compounds in sediments of the Gulf of Finland // Journal of Sea Research. 2022. Vol. 190. № 102307. DOI: 10.1016/j.seares.2022.102307
  19. Атлас геологических и эколого-геологических карт Российского сектора Балтийского моря. СПб: ВСЕГЕИ, 2010. 77 с.
  20. Metelkova L., Zhakovskaya Z., Kukhareva G. et al. Organotin compounds (OTs) in surface sediments, bivalves and algae from the Russian coast of the Barents Sea (Kola Peninsula) and the Fram Strait (Svalbard Archipelago) // Environmental Science and Pollution Research. 2022. Vol. 29. Iss. 23. P. 34659-34669. DOI: 10.1007/s11356-021-18091-0
  21. Kucharski D., Giebułtowicz J., Drobniewska A. et al. The study on contamination of bottom sediments from the Odra River estuary (SW Baltic Sea) by tributyltin using environmetric methods // Chemosphere. 2022. Vol. 308. Part 1. № 136133. DOI: 10.1016/j.chemosphere.2022.136133
  22. Raudonytė-Svirbutavičienė E., Jokšas K., Stakėnienė R. On the effectiveness of tributyltin ban part II: Temporal and spatial trends of organotin pollution in intense sediment accumulation areas and dumping sites of the Baltic Sea // Journal of Hazardous Materials Advances. 2023. Vol. 10. № 100294. DOI: 10.1016/j.hazadv.2023.100294
  23. Wenjun Gui, Chunxia Tian, Qianqian Sun et al. Simultaneous determination of organotin pesticides by HPLC-ICP-MS and their sorption, desorption, and transformation in freshwater sediments // Water Research. 2016. Vol. 95. P. 185-194. DOI: 10.1016/j.watres.2016.02.056
  24. Liping Fang, Cuihong Xu, Ji Li et al. The importance of environmental factors and matrices in the adsorption, desorption, and toxicity of butyltins: a review // Environmental Science and Pollution Research. 2017. Vol. 24. Iss. 10. P. 9159-9173. DOI: 10.1007/s11356-017-8449-z
  25. Quintas P.Y., Fernández E.M., Spetter C.V. et al. Preliminary studies about the role of physicochemical parameters on the organotin compound dynamic in a South American estuary (Bahía Blanca, Argentina) // Environmental Monitoring and Assessment. 2019. Vol. 191. Iss. 3. № 127. DOI: 10.1007/s10661-019-7260-3
  26. Cruz A., Anselmo A.M., Suzuki S., Mendo S. Tributyltin (TBT): A Review on Microbial Resistance and Degradation // Critical Reviews in Environmental Science and Technology. 2015. Vol. 45. Iss. 9. P. 970-1006. DOI: 10.1080/10643389.2014.924181
  27. Шкапенко В.В. Геохімічні особливості бiотрансформацiï неполярних вуглеводнів і сполук важких металiв у донних вiдкладах: Автореф. дис. … канд. геол. наук. Киïв: Iнститут геохiмiï, мiнералогiï та рудоутворення iм. М.П.Семененка, 2016. 20 с. (на украинском).
  28. Martina Furdek Turk, Ivanić M., Dautović J. et al. Simultaneous analysis of butyltins and total tin in sediments as a tool for the assessment of tributyltin behaviour, long-term persistence and historical contamination in the coastal environment // Chemosphere. 2020. Vol. 258. № 127307. DOI: 10.1016/j.chemosphere.2020.127307
  29. Ronia Chung-tin Sham, Lily Shi Ru Tao, Yanny King Yan Mak et al. Occurrence and trophic magnification profile of triphenyltin compounds in marine mammals and their corresponding food webs // Environmental International. 2020. Vol. 137. № 105567. DOI: 10.1016/j.envint.2020.105567
  30. Rajendran K., Dey R., Ghosh A., Das D. In search of biocatalytic remedy for organotin compounds- the recalcitrant eco-toxicants // Biophysical Chemistry. 2022. Vol. 290. № 106888. DOI: 10.1016/j.bpc.2022.106888
  31. Kuzikova I., Andronov E., Zaytseva T. et al. A microcosm approach for evaluating the microbial nonylphenol and butyltin biodegradation and bacterial community shifts in co-contaminated bottom sediments from the Gulf of Finland, the Baltic Sea // Envi-ronmental Science and Pollution Research. 2022. Vol. 29. Iss. 46. P. 69849-69860. DOI: 10.1007/s11356-022-20751-8
  32. Soboń A., Szewczyk R., Długoński J. Tributyltin (TBT) biodegradation induces oxidative stress of Cunninghamella echinulata // International Biodeterioration & Biodegradation. 2016. Vol. 107. P. 92-101. DOI: 10.1016/j.ibiod.2015.11.013
  33. Finnegan C., Ryan D., Enright A.-M., Garcia-Cabellos G. A review of strategies for the detection and remediation of organotin pollution // Critical Reviews in Environmental Science and Technology. 2018. Vol. 48. Iss. 1. P. 77-118. DOI: 10.1080/10643389.2018.1443669
  34. Borrego B.B., Gracioso L.H., Karolski B. et al. Tributyltin degrading microbial enzymes: A promising remediation approach // Marine Pollution Bulletin. 2023. Vol. 189. № 114725. DOI: 10.1016/j.marpolbul.2023.114725
  35. Furdek M., Mikac N., Bueno M. et al. Organotin persistence in contaminated marine sediments and porewaters: In situ deg-radation study using species-specific stable isotopic tracers // Journal of Hazardous Materials. 2016. Vol. 307. P. 263-273. DOI: 10.1016/j.jhazmat.2015.12.037
  36. Norén A., Fedje K.K., Strömvall A.-M. et al. Low impact leaching agents as remediation media for organotin and metal contaminated sediments // Journal of Environmental Management. 2021. Vol. 282. № 111906. DOI: 10.1016/j.jenvman.2020.111906
  37. Tarrés M., Cerdà-Domènech M., Pedrosa-Pàmies R. et al. Transport and distributions of naturally and anthropogenically sourced trace metals and arsenic in submarine canyons // Progress in Oceanography. 2023. Vol. 218. № 103122. DOI: 10.1016/j.pocean.2023.103122
  38. Ugwu I.M., Igbokwe O.A. Sorption of Heavy Metals on Clay Minerals and Oxides: A Review / Advanced Sorption Process Applications. London: IntechOpen, 2019. 23 p. DOI: 10.5772/intechopen.80989
  39. Remeikaitė-Nikienė N., Garnaga-Budrė G., Lujanienė G. et al. Distribution of metals and extent of contamination in sediments from the south-eastern Baltic Sea (Lithuanian zone) // Oceanologia. 2018. Vol. 60. Iss. 2. P. 193-206. DOI: 10.1016/j.oceano.2017.11.001
  40. Zaborska A., Siedlewicz G., Szymczycha B. et al. Legacy and emerging pollutants in the Gulf of Gdańsk (southern Baltic Sea) – loads and distribution revisited // Marine Pollution Bulletin. 2019. Vol. 139. P. 238-255. DOI: 10.1016/j.marpolbul.2018.11.060
  41. Rudnick R.L., Gao S. 4.1 – Composition of the Continental Crust // Treatise of Geochemistry. Elsevier, 2014. Vol. 4. P. 1-51. DOI: 10.1016/B978-0-08-095975-7.00301-6

Similar articles

Assessment of the efficiency of acid mine drainage purification (using the example of copper-pyrite mines in the Middle Urals)
2024 Lyudmila S. Rybnikova, Petr A. Rybnikov, Vera Yu. Navolokina
Natural carbon matrices based on brown coal, humic acids and humine extracted from it for purification of aqueous solutions from low molecular weight organic impurities
2024 Sultan O. Karabaev, Aleksandr V. Kharchenko, Irina P. Gainullina, Valentina A. Kudryavtseva, Tatyana D. Shigaeva
Iron ore tailings as a raw material for Fe-Al coagulant production
2024 Vera A. Matveeva, Maria A. Chukaeva, Aleksandra I. Semenova
Anomaly detection in wastewater treatment process for cyber resilience risks evaluation
2024 Evgeniya S. Novikova, Elena V. Fedorchenko, Marat A. Bukhtiyarov, Igor B. Saenko
Quantitative determination of sulfur forms in bottom sediments for rapid assessment of the industrial facilities impact on aquatic ecosystems
2024 Ivan P. Sverchkov, Vladimir G. Povarov
Environmental safety and sustainable development: new approaches to wastewater treatment
2024 Mariya A. Pashkevich, Aleksandr S. Danilov, Vera A. Matveeva