Submit an Article
Become a reviewer
Research article
Geology

Trace elements in the silicate minerals of the Borodino Meteorite (Н5)

Authors:
Kristina G. Sukhanova
About authors
  • Ph.D. Junior Researcher Institute of Precambrian Geology and Geochronology RAS ▪ Orcid
Date submitted:
2023-04-04
Date accepted:
2023-06-20
Date published:
2023-10-09

Abstract

Major (EPMA) and trace (SIMS) element geochemistry in olivine, low-Са pyroxene and mesostasis from porphyritic and barred chondrules, as well as the pyroxene-olivine aggregate and matrix of equilibrated ordinary Borodino chondrite (Н5) is discussed. No differences in major element concentrations in the silicate minerals of the chondrules and matrix of the meteorite were found. The minerals of porphyritic olivine-pyroxene and barred chondrules display elevated trace element concentrations, indicating the rapid cooling of chondrule melt in a nebula, and are consistent with experimental data. The trace element composition of low-Са pyroxene is dependent on the position of a pyroxene grain inside a chondrule (centre, rim, matrix) and the composition of mesostasis is controlled by the type of the object (porphyritic and barred chondrules, pyroxene-olivine aggregate). The depletion in trace elements of low-Са pyroxene from the rims of chondrules in comparison with those from the centre and matrix of the meteorite was revealed. The chondrule rim is affected by interaction with surrounding gas in a nebula, possibly resulting in the exchange of moderately volatile trace elements in low-Са pyroxene and depletion in these elements relative to pyroxene from the centre of the chondrule or matrix of the meteorite. The mesostasis of barred and porphyritic olivine-pyroxene chondrules contains more trace elements than that of porphyritic olivine chondrule and pyroxene-olivine aggregate, suggesting the rapid cooling of these objects or their high liability to thermal metamorphism, which results in the recrystallization of chondrule glass into plagioclase. However, no traces of the elevated effect of thermal metamorphism on the above objects have been revealed. The results obtained indicate no traces of the equilibration of the trace element composition of silicate minerals in equilibrated chondrites.

Keywords:
ordinary chondrites trace elements olivine pyroxene mesostasis ion probe
Online First

References

  1. Ivanova M.A., Nazarov M.A. History of the meteorite collection of the Russian Academy of Sciences // Geological Society, London, Special Publications. 2006. Vol. 256. P. 219-236. DOI: 10.1144/GSL.SP.2006.256.01.11
  2. Оболонская Э.В., Попова Е.Е. Метеорит «Бородино» // Русская история. 2012. № 1. С. 95-96.
  3. Оболонская Э.В., Попова Е.Е. Собрание метеоритов горного музея Санкт-Петербургского горного университета // Метеорит Челябинск – год на Земле: Материалы Всероссийской научной конференции, 14-15 февраля 2014, Челябинск, Россия. Челябинск: Челябинский государственный краеведческий музей, 2014. С. 355-363.
  4. Scott E.R.D., Krot A.N. Chondrites and Their Components // Treatise on Geochemistry (Second Edition). 2014. Vol. 1. Р. 65-137. DOI: 10.1016/B978-0-08-095975-7.00104-2
  5. Chondrules: Records of Protoplanetary Disk Processes / Ed. by S.S.Russell, Jr.H.C.Connolly, A.N.Krot. Cambridge: Cambridge University Press, 2018. 450 p. DOI: 10.1017/9781108284073
  6. Jacquet E., Piralla M., Kersaho P., Marrocchi Y. Origin of isolated olivine grains in carbonaceous chondrites // Meteoritics & Planetary Science. 2021. Vol. 56. № 1. P. 13-33. DOI: 10.1111/maps.13583
  7. Marrocchi Y., Euverte R., Villeneuve J. et al. Formation of CV chondrules by recycling of amoeboid olivine aggregate-like precursors // Geochimica et Cosmochimica Acta. 2019. Vol. 247. P. 121-141. DOI: 10.1016/j.gca.2018.12.038
  8. Nardi L., Palomba E., Longobardo A. et al. Mapping olivine abundance on asteroid (25143) Itokawa from Hayabusa/NIRS data // Icarus. 2019. Vol. 321. P. 14-28. DOI: 10.1016/j.icarus.2018.10.035
  9. Jacquet E., Marrocchi Y. Chondrule heritage and thermal histories from trace element and oxygen isotope analyses of chondrules and amoeboid olivine aggregates // Meteoritics & Planetary Science. 2017. Vol. 52. Iss. 12. P. 2672-2694. DOI: 10.1111/maps.12985
  10. Libourel G., Krot A.N. Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin // Earth and Planetary Science Letters. 2007. Vol. 254. Iss. 1-2. P. 1-8. DOI: 10.1016/j.epsl.2006.11.013
  11. Tenner T.J., Nakashima D., Ushikubo T. et al. Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation // Geochimica et Cosmochimica Acta. 2015. Vol. 148. P. 228-250. DOI: 10.1016/j.gca.2014.09.025
  12. Bischoff A., Schleiting M., Wieler R., Patzek M. Brecciation among 2280 ordinary chondrites – Constraints on the evolution of their parent bodies // Geochimica et Cosmochimica Acta. 2018. Vol. 238. P. 516-541. DOI: 10.1016/j.gca.2018.07.020
  13. Grossman J.N., Brearley A.J. The onset of metamorphism in ordinary and carbonaceous chondrites // Meteoritics & Planetary Science. 2005. Vol. 40. Iss. 1. P. 87-122. DOI: 10.1111/j.1945-5100.2005.tb00366.x
  14. Chakraborty S. Diffusion Coefficients in Olivine, Wadsleyite and Ringwoodite // Reviews in Mineralogy and Geochemistry. 2010. Vol. 72. № 1. P. 603-639. DOI: 10.2138/rmg.2010.72.13
  15. Cherniak D.J. REE diffusion in olivine // American Mineralogist. 2010. Vol. 95. № 2-3. P. 362-368. DOI: 10.2138/am.2010.3345
  16. Pape J., Mezger K., Bouvier A.-S., Baumgartner L.P. Time and duration of chondrule formation: Constraints from 26Al-26Mg ages of individual chondrules // Geochimica et Cosmochimica Acta. 2019. Vol. 244. P. 416-436. DOI: 10.1016/j.gca.2018.10.017
  17. Marrocchi Y., Villeneuve J., Batanova V. et al. Oxygen isotopic diversity of chondrule precursors and the nebular origin of chondrules // Earth and Planetary Science Letters. 2018. Vol. 496. P. 132-141. DOI: 10.1016/j.epsl.2018.05.042
  18. Piralla M., Villeneuve J., Batanova V. et al. Conditions of chondrule formation in ordinary chondrites // Geochimica et Cosmochimica Acta. 2021. Vol. 313. P. 295-312. DOI: 10.1016/j.gca.2021.08.007
  19. Varela M.E. Bulk trace elements of Mg-rich cryptocrystalline and ferrous radiating pyroxene chondrules from Acfer 182: Their evolution paths // Geochimica et Cosmochimica Acta. 2019. Vol. 257. P. 1-15. DOI: 10.1016/j.gca.2019.04.025
  20. Jacquet E., Alard O., Gounelle M. Trace element geochemistry of ordinary chondrite chondrules: The type I/type II chondrule dichotomy // Geochimica et Cosmochimica Acta. 2015. Vol. 155. P. 47-67. DOI: 10.1016/j.gca.2015.02.005
  21. Jacquet E., Alard O., Gounelle M. Chondrule trace element geochemistry at the mineral scale // Meteoritics & Planetary Science. 2012. Vol. 47. № 11. P. 1695-1714. DOI: 10.1111/maps.12005
  22. Jacquet E., Alard O., Gounelle M. The formation conditions of enstatite chondrites: Insights from trace element geochemistry of olivine-bearing chondrules in Sahara 97096 (EH3) // Meteoritics & Planetary Science. 2015. Vol. 50. № 9. P. 1624-1642. DOI: 10.1111/maps.12481
  23. Varela M.E., Sylvester P., Brandstätter F., Engler A. Nonporphyritic chondrules and chondrule fragments in enstatite chondrites: Insights into their origin and secondary processing // Meteoritics & Planetary Science. 2015. Vol. 50. № 8. P. 1338-1361. DOI: 10.1111/maps.12468
  24. Skublov S.G., Rumyantseva N.A., Vanshtein B.G. et al. Zircon Xenocrysts from the Shaka Ridge Record Ancient Continental Crust: New U-Pb Geochronological and Oxygen Isotopic Data // Journal of Earth Science. 2022. Vol. 33. № 1. P. 5-16. DOI: 10.1007/s12583-021-1422-2
  25. Румянцева Н.А., Скублов С.Г., Ванштейн Б.Г. и др. Циркон из габброидов хребта Шака (Южная Атлантика): U-Pb возраст, соотношение изотопов кислорода и редкоэлементный состав // Записки Российского минералогического общества. 2022. Ч. CLI. № 1. С. 44-73. DOI: 10.31857/S0869605522010099
  26. Скублов С.Г., Гаврильчик А.К., Березин А.В. Геохимия разновидностей берилла: сравнительный анализ и визуализация аналитических данных методами главных компонент (PCA) и стохастического вложения соседей с t-распределением (t-SNE) // Записки Горного института. 2022. Т. 255. С. 455-469. DOI: 10.31897/PMI.2022.40
  27. Гаврильчик А.К., Скублов С.Г., Котова Е.Л. Редкоэлементный состав берилла из месторождения Шерловая Гора, Юго-Восточное Забайкалье // Записки Российского минералогического общества. 2021. Ч. CL. № 2. С. 69-82. DOI: 10.31857/S0869605521020052
  28. Ашихмин Д.С., Скублов С.Г., Мельник А.Е. и др. Геохимия породообразующих минералов в мантийных ксенолитах из базальтов вулкана Сверре, арх. Шпицберген // Геохимия. 2018. № 8. С. 820-828. DOI: 10.1134/S0016752518080022
  29. Суханова К.Г., Кузнецов А.Б., Галанкина О.Л. Особенности кристаллизации оливина в обыкновенных хондритах (метеорит Саратов): геохимия редких и редкоземельных элементов // Записки Горного института. 2022. Т. 254. С. 149-157. DOI: 10.31897/PMI.2022.39
  30. Суханова К.Г., Скублов С.Г., Галанкина О.Л. и др. Редкоэлементный состав силикатных минералов в хондрах и матрице метеорита Бушхов // Геохимия. 2020. Т. 65. № 12. С. 1176-1185. DOI: 10.31857/S0016752520120067
  31. Суханова К.Г. Состав силикатных минералов как отражение эволюции равновесных обыкновенных хондритов: Автореф. дис. … канд. геол.-минерал. наук. М.: Московский государственный университет, 2022. 21 c.
  32. Zanetta P.-M., Le Guillou C., Leroux H. et al. Modal abundance, density and chemistry of micrometer-sized assemblages by advanced electron microscopy: Application to chondrites // Chemical Geology. 2019. Vol. 514. P. 27-41. DOI: 10.1016/j.chemgeo.2019.03.025
  33. Portnyagin M., Almeev R., Matveev S., Holtz F. Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma // Earth and Planetary Science Letters. 2008. Vol. 272. Iss. 3-4. P. 541-552. DOI: 10.1016/j.epsl.2008.05.020
  34. Palme H., Lodders K., Jones A. Solar System Abundances of the Elements // Treatise on Geochemistry (Second Edition). 2014. Vol. 2. Р. 15-36. DOI: 10.1016/b978-0-08-095975-7.00118-2
  35. Engler A., Varela M.E., Kurat G. et al. The origin of non-porphyritic pyroxene chondrules in UOCs: Liquid solar nebula condensates? // Icarus. 2007. Vol. 192. Iss. 1. P. 248-286. DOI: 10.1016/j.icarus.2007.06.016

Similar articles

Impact of carbon dioxide on the main geotechnical quality criteria and preparation cost of cemented paste backfill
2023 Pitchou M. Bukasa, Melvin M. Mashingaidze, Simasiku L. Simasiku
Improving the efficiency of oil vapor recovery units in the commodity transport operations at oil terminals
2023 Vladimir V. Pshenin, Gulnur S. Zakirova
Combined method of phytoremediation and electrical treatment for cleaning contaminated areas of the oil complex
2023 Nikolay S. Shulaev, Ramil R. Kadyrov, Valeriya V. Pryanichnikova
Analysis of the problems of high-quality drinking water extraction from underground water intakes on Vysotsky Island in the Vyborg district of the Leningrad region
2023 Vyacheslav V. Nikishin, Pavel A. Blinov, Vladimir V. Fedorov, Evgeniya K. Nikishina, Igor V. Tokarev
Optimization of the location of a multilateral well in a thin oil rim, complicated by the presence of an extensive gas cap
2023 Кirill О. Тomskiy, Maria S. Ivanova
Selection of the required number of circulating subs in a special assembly and investigation of their performance during drilling of radial branching channels by sectional positive displacement motors
2023 Ilya А. Lyagov, Alexander V. Lyagov, Dinislam R. Isangulov, Аnastasiya А. Lyagova