Submit an Article
Become a reviewer
Vol 5 Iss. 1
Pages:
73-75
Download volume:
RUS
Article

Polar relations of imaginary triangles and tetrahedrons

Authors:
E. S. Fedorov
Date submitted:
1913-07-26
Date accepted:
1913-09-30
Date published:
1914-01-01

Abstract

The known properties of the gnomonic projections of trigonaloid crystals prompted me about the presence of the relationships mentioned in the title that seemed paradoxical to me. For the case under consideration, the theory of poles and polars unfolds in its usual form: two points are the poles of two polars and, in turn, determine the straight line-polar of the point of intersection of these polars. Each vertex of a trigon has a polar opposite side, etc., and in no case there is a point through which its polar would pass, as it occurs in the case for imaginary projective conjectures (see article).

Область исследования:
(Archived) Articles
Go to volume 5

Similar articles

Mine "Yuliya" of the joint-stock company "Siberian Copper"
1914 V. N. Tomilin
Collinear transformation of imaginary ray pairs
1914 E. S. Fedorov
On the structure of diamond crystals according to Bragg
1914 E. S. Fedorov
Theorem relating to the circle system
1914 E. S. Fedorov
Spherical aggregates of conoprimes
1914 E. S. Fedorov
Dunits of Vasil'evo - Shaitanskay dacha in the Urals
1914 D. Misharev