Stress distribution in the rim of a rapidly rotating flywheel
Authors:
Abstract
Neglecting the influence of the spokes, we will consider the flywheel as a ring with a circular meridional cross-section (Fig. 1). Let r1 be the cross-section radius; r2 be the radius of the circle containing the cross-section centers. We will take the oz axis as the axis of rotation and assume that the angular velocity is constant and sufficiently large. Using the kinetostatic method, we will apply an inertial force to each element of the rod and determine its elastic equilibrium. To simplify the boundary conditions, we will move to bipolar coordinates.
Keywords:
flywheel
References
- Булгаков Н Распределение электрического заряда на кольце, 1903.
- Папкович П.Ф. Теория упругости, 1939.
- Смирнов В.И. Курс высшей математики, т. Ill, 1949.
- Фок В.А. Скин-эффект в кольце круглого сечения, журнал Русского физико-химического общества, т XII, вып. 3, 1930.
- Hicks W. Foroidal Functions, Phil. Frans. Roy. Soc., 1881.
- Newnan C. Theorie der Elektrizitäts und Wärmevertellung in einem Ringe, 1864.
- Neuber H. Kerbspanungslehre Grundlagett für genaus Spannungrechnung, 1937.
Similar articles
Notes on the derivation of formulas for determining the direction error from the eccentricity of the theodolite or signals
1952 Z. D. Nizguretskii
Comparative analysis of joint and separate adjustment of two points of mine survey triangulation
1952 V. G. Zdanovich
Testing of an electric motor with moisture-resistant insulation of a submersible motor-pump with a capacity of Q = 100 m³/hour at a pressure of H = 100 m
1952 L. F. Shklyarskii