Submit an Article
Become a reviewer
Vol 233
Pages:
492
Download volume:

MOISTURE CONTENT OF NATURAL GAS IN BOTTOM HOLE ZONE

Authors:
E. A. Bondarev1
I. I. Rozhin2
K. K. Argunova3
About authors
  • 1 — Institute of Oil and Gas Problems, Siberian Division RAS
  • 2 — Institute of Oil and Gas Problems, Siberian Division RAS
  • 3 — Institute of Oil and Gas Problems, Siberian Division RAS
Date submitted:
2018-05-24
Date accepted:
2018-07-20
Date published:
2018-10-25

Abstract

For the traditional problem of gas flow to a well in the center of circular reservoir, the influence of initial reservoir conditions on dynamics of gas moisture content distribution has been determined. Investigations have been performed in the framework of mathematical model of non-isothermal real gas flow through porous media where heat conductivity was considered to be negligible in comparison with convective heat transfer. It is closed by empirical correlation of compressibility coefficient with pressure and temperature, checked in previous publications. Functional dependence of moisture content in gas on pressure and temperature is based on empirical modification of Bukacek relation. Numerical experiment was performed in the following way. At first step, axisymmetric problem of non-isothermal flow of real gas in porous media was solved for a given value of pressure at the borehole bottom, which gives the values of pressure and temperature as functions of time and radial coordinate. Conditions at the outer boundary of the reservoir correspond to water drive regime of gas production. At the second step, the calculated functions of time and coordinate were used to find the analogous function for moisture content. The results of experiment show that if reservoir temperature essentially exceeds gas – hydrate equilibrium temperature than moisture content in gas distribution is practically reflects the one of gas temperature. In the opposite case, gas will contain water vapor only near  bottom hole and at the rest of reservoir it will be almost zero. In both cases, pressure manifests its role through the rate of gas production, which in turn influences convective heat transfer and gas cooling due to throttle effect.

10.31897/pmi.2018.5.492
Go to volume 233

References

  1. Бондарев Э.А. Особенности математического моделирования систем добычи и транспорта природного газа в Арктической зоне России / Э.А.Бондарев, И.И.Рожин, К.К.Аргунова // Записки Горного института. 2017. Т. 228. С. 705-716. DOI: 10.25515/PMI.2017.6.705.
  2. Бондарев Э.А. Плоскопараллельная неизотермическая фильтрация газа: роль теплопереноса / Э.А.Бондарев, К.К.Аргунова, И.И.Рожин // Инженерно-физический журнал. 2009. Т. 82. № 6. С. 1059-1065.
  3. Брусиловский А.И. Фазовые превращения при разработке месторождений нефти и газа. М.: Грааль, 2002. 575 с.
  4. Гухман Л.М. Подготовка газа северных газовых месторождений к дальнему транспорту. Л.: Недра, 1980. 161 с.
  5. Дегтярев Б.В. Борьба с гидратами при эксплуатации газовых скважин в северных районах / Б.В.Дегтярев, Э.Б.Бухгалтер. М.: Недра, 1976. 197 с.
  6. Истомин В.А. Предупреждение и ликвидация газовых гидратов в системах добычи газа / В.А.Истомин, В.Г.Квон. М.: ООО «ИРЦ Газпром», 2004. 506 с.
  7. Коротаев Ю.П. Борьба с гидратами при транспорте природных газов / Ю.П.Коротаев, А.М.Кулиев, Р.М.Мусаев. М.: Недра, 1973. 136 с.
  8. Латонов В.В. Расчет коэффициента сжимаемости природных газов / В.В.Латонов, Г.Р.Гуревич // Газовая промышленность. 1969. № 2. С. 7-9.
  9. Намиот А.Ю. Растворимость газов в воде: Справочное пособие. М.: Недра, 1991. 167 с.
  10. Николаев В.Е. Численный анализ взаимодействия тепловых и гидродинамических процессов при фильтрации газа: Автореф. ... канд. физ.-мат. наук / Якутский государственный университет им. М.К.Аммосова. Якутск, 2000. 13 с.
  11. Термогидродинамика систем добычи и транспорта газа / Э.А.Бондарев, В.И.Васильев, А.Ф.Воеводин, Н.Н. Павлов, А.П.Шадрина. Новосибирск: Наука. Сибирское отделение, 1988. 272 с.
  12. Bondarev E.A. Plane-parallel nonisothermal gas filtration: the role of thermodynamics / E.A.Bondarev, K.K.Argunova, I.I.Rozhin // Journal of Engineering Thermophysics. 2009. Vol. 18. № 2. P. 168-176. DOI: 10.1134/S1810232809020088.
  13. Bukacek R.F. Equilibrium moisture content of natural gases // Research Bulletin. Institute of Gas Technology, Chicago, USA. 1955. Vol. 8. № 11. P. 20.
  14. Kay W.B. Density of hydrocarbon gases and vapors at high temperature and pressures // Industrial & Engineering Chemistry Research. 1936. Vol. 28. P. 1014-1019.
  15. Sloan E.D. Clathrate hydrates of natural gases / E.D.Sloan, C.A.Koh. Boca Raton: Taylor & Francis Group/CRC Press, 2008. 720 p.

Similar articles

EXTRACTION OF COPPER, COBALT AND NICKEL IONS FROM AQUEOUS SOLUTIONS BY EXTRACTANT CYANEX 272
2018 L. A. Voropanova, V. P. Pukhova
EXPERIENCE OF INTEGRATED USE OF GOLD-BEARING RAW MATERIAL IN THE PRODUCTION OF PRECIOUS METALS
2018 V. V. Zhmurova, N. V. Nemchinova
JUSTIFICATION OF ECONOMIC BENEFITS OF ARCTIC LNG TRANSPORTATION BY SEA
2018 S. Yu. Kozmenko, V. A. Masloboev, D. A. Matviishin
REGULARITIES OF MATERIAL DESTRUCTION OF THE IMPACTOR IN REPEATED SINGLE PUNCH
2018 V. I. Bolobov, Le Tkhan' Bin
METHOD FOR FORECAST OF SURFACE DEFORMATION DURING EXCAVATION OPERATIONS IN RESTRAINT URBAN CONDITIONS USING THE SLURRY TRENCH TECHNIQUE
2018 P. A. Demenkov, L. A. Goldobina, O. V. Trushko
OBTAINING INTERMETALLIC COMPOUNDS IN Al–Ti–Zn SYSTEM
2018 V. V. Kaminskii, S. A. Petrovich, V. A. Lipin