Submit an Article
Become a reviewer
Vol 37 Iss. 3
Pages:
109-113
Download volume:
RUS
Article

Study of a constrained drop falling in a viscous liquid

Authors:
R. B. Rozenbaum
O. M. Todes
Date submitted:
1960-09-12
Date accepted:
1960-11-16
Date published:
1961-09-04

Abstract

Free fall of spherical particles in a viscous fluid has been studied by many researchers in connection with mineral processing, chemical technology, metallurgy, etc. By changing the diameters of balls, density and viscosity of the fluid, it was possible to trace the motion of particles in the region of small and large values of the Reynolds and Archimedes criteria, i.e. in laminar, transitional and turbulent regimes.

Область исследования:
(Archived) Without section
Go to volume 37

References

  1. Rosenbaum, R. B. and Todes, O. M. Theoretical analysis of the constrained fall of a ball in a viscous fluid. Journal of Mining Institute, 1958, vol. XXXVI, iss. 3.
  2. Physics Workshop. Ed. V. I. Iveronova. PH of MSU, 1951, pp. 566.
  3. Smirnov, N. I., Ruban, V. L. Relative velocity of droplet motion, JETP, 1949, vol. XXII, iss. 10, pp. 1068.
  4. Smirnov N. I., Ruban V. L. The velocity of motion of droplets in a medium in the laminar region, JETP, 1952, vol. XXV, iss. 12, p. 1068. 1305.
  5. Smirnov N. I., Ruban V. L. Droplet motion in a medium, JETP, 1953, vol. XXVI, iss. 1, p. 110.
  6. W. Rybczynski. Bull. Acad. Sci., Cracow, Series A, 1911, P. 40.
  7. Hadamard Comp. Rend., 1911, V. 152, P. 1735.
  8. Peebls S. V. a Garber H. I. Chem. Eng. Progr., 1953, V. 49, P. 88.

Similar articles

On the influence of the output work on the secondary electron emission of metals
1961 I. M. Bronshtein, Ya. M. Shchuchinskii
Flow of a flat potential fluid flow on some algebraic contours
1961 N. P. Neronov
X-ray study of deformed mica
1961 E. O. Shvaikovskaya, A. I. Nikolaeva, T. D. Shalyt
Solution of Maxwell's equations in four-dimensional space-time with constant negative curvature
1961 A. S. Ter-Pogosyan
On the theory of stochastic analysis of inclusions parameters
1961 M. L. Verzhbinskii
One generalization of the gulden formula
1961 A. M. Zhuravskii