The issue of reducing electricity consumption costs is becoming relevant for industrial enterprises, taking into account the growing demand for electricity every year. The electricity consumption of air coolers at a gas processing plant was considered in the framework of this study. The change in ambient temperature (during the day and depending on the season) is the main disturbing factor affecting the performance of air coolers. With such significant seasonal changes in air temperature, its density changes, which causes fluctuations in the power consumed by the electric motor by up to 30 %. The issues of increasing energy efficiency, forecasting and determining the power consumption rate of air coolers, depending on changing external conditions, therefore become important. A methodology has been developed to determine the standard power consumption of air coolers depending on two factors – the ambient temperature and the load of the gas processing plant. A two-factor power-law approximation of the values was carried out due to nonlinear dependencies on plant loading and ambient temperature. The dependence of power consumption on ambient temperature and the loading of the installation on raw materials for any type of air cooler is determined with high accuracy (the root-mean-square error of the calculated and approximating values does not exceed 1 %). The formula for calculating the standard consumption of electric power of the air cooler at the considered installation was determined based on the results of the study. The methodology can be used by employees of gas processing enterprises to determine the standard electricity consumption of air coolers under changing climatic and technological factors.