Recent research on predicting petrophysical and mechanical properties of carbonate rocks, integrating textural and microstructural observations with geotechnical measurements, has sparked critical discussions. While some studies present robust experimental methods and fresh insights, others rely on less rigorous approaches. In the Mediterranean area, shallow-water calcarenites crop out along both the coastline and internal areas. Typically, these carbonates are soft and exhibit high porosity, open in type, controlled by the depositional fabric and post-depositional processes. Their strength primarily depends on the type and amount of calcite cement, with water presence significantly impacting their stress-strain behavior. Strength and stiffness decrease markedly in the transition from dry to saturated conditions. Well-cemented calcarenites with early and late diagenetic cement exhibit brittle behavior in both dry and saturated states, whereas poorly cemented types with early calcite cementation alone show brittle behavior when dry and pseudo-ductile to ductile behavior when saturated. Dual-porosity systems, combining micro- and macro-pores, dominate the hydraulic properties of calcarenites, playing a key role in decay mechanisms and patterns. This study compares existing literature with laboratory analyses of calcarenite lithofacies from Apulia and Basilicata (Southern Italy), yielding new insights into their mechanical and physical behavior, as well as durability.