Температура в продуктивном геотермальном резервуаре Долины гейзеров (Камчатка), рассчитанная по полевошпатовому Na-K-геотермометру, устойчиво повышается в течение последних 10 лет в среднем с 165 до 235 °С, что приближается к показателям гидротермального взрыва пароводяной смеси. Для анализа химических геотермометров использовано TOUGHREACT-моделирование, с помощью которого на одноэлементной модели воспроизведены ранее известный Na-K полевошпатовый геотермометр и получены новые формулы для трех Na-K-геотермометров: цеолитового, смектитового и на основе вулканического стекла. Химическая история 1968-2018 гг. по хлор-иону, который рассматривается в качестве инертного трассера геофильтрационных процессов, показывает, что после 2007 г. в гейзерный резервуар поступает значительное количество инфильтрационных вод (их массовая доля оценивается от 5 до 15 %). Предполагается, что повышенные показания Na-K полевошпатового геотермометра в последние годы не отражают возрастание температуры в гейзерном резервуаре, а являются эффектом разбавления смектитовыми водами.
Численная 3D-модель Мутновского геотермального месторождения (Дачные источники), состоящая из 517 элементов и частично учитывающая двойную пористость, была разработана в 1992-1993 годах с помощью программы TOUGH2. Калибровка данной модели была выполнена по данным опытных выпусков из скважин и начального распределения температуры и давления в резервуаре. Эта модель использовалась для технико-экономического обоснования проекта строительства Мутновской ГеоЭС (2002 г.). Модель была воспроизведена при помощи программы PetraSim v.5.2, и для ее калибровки были использованы дополнительные данные по истории эксплуатации до 2006 г. и инверсионное iTOUGH2-EOS1-моделирование. Сравнение оценок параметров резервуара, полученных с использованием инверсионного моделирования, с предшествующими оценками параметров резервуара (даны в круглых скобках) показало следующее: расход восходящего потока теплоносителя в естественных условиях 80,5 (54,1) кг/с, энтальпия теплового потока 1430 (1390) кДж/кг, проницаемость резервуара 27∙10 –15 -616∙10 –15 (3∙10 –15 -90∙10 –15 ) м 2 . Инверсионное моделирование использовалось также для оценки расходов реинжекции, притока в резервуар метеорных вод в центральной части геотермального поля и сжимаемости резервуара.