A comprehensive mineralogical and geochemical characterization (XRF, ICP-MS, SEM-EDS, SIMS methods) of garnetites and their protoliths from the Marun-Keu complex (Polar Urals), one of the key objects in understanding the evolution of the Uralian Orogen, is presented. Garnetites and their protoliths from the Marun-Keu complex, Polar Urals, a key locality for understanding the evolution of the Uralian Orogen, are described mineralogically and geochemically using XRF, ICP-MS, SEM-EDS and SIMS methods. Ultramafic (in most cases) and mafic rocks are understood as protoliths for garnetites. A general trend for garnetites is an increase in total REE concentration relative to that of their protoliths. All the analyzed garnetites display a considerable decrease in Cr, Ni and Co. V concentration in the garnetites is also lower than that of the protoliths, though not so markedly. Garnets from garnetites evolving after peridotites generally exhibit elevated (relative to garnets from garnetites evolving after mafic rocks, such as porphyrites) Prp and lowered Alm content, which seems to be due to high Mg concentration in the protolith. In garnetites after peridotites a garnet exhibiting an uncommon non-differentiated REE spectrum with a considerable positive Eu-anomaly was found, which could be due to the inheritance of a REE spectrum by garnet from a precursor mineral, in this case plagioclase. Slyudyanaya Gorka garnetites were probably formed from mafic and ultramafic rocks in oceanic crust, which migrated to higher levels of the section under the influence of the crustal fluid flowing along fracturing zones.
This paper presents a complex mineralogical and geochemical characteristic (based on SEM-EDS, ICP-MS analysis) of the fahlband rocks of the Kiv-Guba-Kartesh occurrence within the White Sea mobile belt (WSMB ). The term “fahlband” first appeared in the silver mines of Kongsberg in the 17th century. Now fahlbands are interlayers or lenses with sulfide impregnation, located in the host, usually metamorphic rock. The level of sulfide content in the rock exceed the typical accessory values, but at the same time be insufficient for massive ores . Fahlbands are weathered in a different way than the host rocks, so they are easily distinguished in outcrops due to their rusty-brown color. The studied rocks are amphibolites, differing from each other in garnet content and silicification degree. Ore mineralization is represented mainly by pyrrhotite and pyrite, and pyrrhotite grains are often replaced along the periphery by iron oxides and hydroxides, followed by pyrite overgrowth. At the same time, the rock contains practically unaltered pyrrhotite grains of irregular shape with fine exsolution structures composed of pentlandite, and individual pyrite grains with an increased Ni content (up to 5.4 wt.%). A relatively common mineral is chalcopyrite, which forms small grains, often trapped by pyrrhotite. We have also found single submicron sobolevskite and hedleyite grains. The REE composition of the fahlband rocks suggests that they are related to Archean metabasalts of the Seryakskaya and Loukhsko-Pisemskaya structures of the WSMB, rather than with metagabbroids and metaultrabasites common in the study area.