Одной из задач, решаемых в ходе выделения из раствора кристаллических осадков, является получение продуктов с заданными технологическими свойствами. В зависимо-сти от способа создания пересыщения и требований, предъявляемых к качеству кристал-лического осадка, можно использовать два принципиально отличающиеся подхода для ее решения. При высоких пересыщениях центры роста возникают самопроизвольно и их ко-личество в заметной степени определяет свойства конечного продукта. Кристаллизация в метастабильной области растворов не допускает самопроизвольного зародышеобразования и в этом случае становится неизбежным введение затравочной фазы, природа которой в известной степени определяет свойства конечного продукта. В реальном процессе проявляются механизмы, нарушающие нормальный рост кристаллов, вызывая их искажение, приводящее к гетерогенному зародышеобразованию и даже перекристаллизации с измельчением затравочного материала. Границей проявления этих тенденций служит величина предельного пересыщения, отнесенного к единице поверхности раздела фаз. При этом развитие соответствующих ростовых механизмов про-порционально отклонению удельного пересыщения раствора от его предельного значения. Традиционным источником гетерогенного зародышеобразования является механическое взаимодействие частиц, вероятность которого пропорциональна их концентрации. Для частиц затравки одинаковой природы и морфологии в условиях воспроизводимой турбулентности потока наиболее существенным фактором гетерогенного зародышеобразования становится масса частиц и, следовательно, их размер. Математическое описание этих тенденций позволило установить зависимость конечного размера частиц от концентрации затравки в исходной пульпе и показать существование минимума для количества частиц конечного продукта. Экспериментальное исследование свойств химических осадков в зависимости от количества затравки выполнялось применительно к разложению алюминатных растворов глиноземного производства. Процесс выделения гидроксида алюминия позволил установить количество затравочного гидроксида алюминия, приводящего к получению продукта максимальной крупности и тем самым подтвердить справедливость теоретических выводов.
Изложены результаты социологического исследования среди студентов первого курса химико-металлургического факультета. Вопросы исследования: мотивы поступления в Горный университет, факторы, повлиявшие на выбор профессии, удовлетворенность учебным процессом и условиями обучения, видение перспектив самореализации в выбранной профессии и факторы выбора места работы. Дан анализ полученных результатов и рекомендации по привлечению абитуриентов в Горный университет.
Представлены материалы кинетического анализа многостадийного процесса массо- переноса при декомпозиции алюминатных растворов глиноземного производства. Пока- зано, что роль эффективной концентрации в уравнении массопереноса могут играть кон- центрационные показатели, учитывающие распределение реагентов и продуктов в диффу- зионном слое. Приведены результаты экспериментальных исследований потоков кристаллизации на затравке различного фракционного состава.
На основании ранее полученной модели процесса декомпозиции в аппарате периодического действия составлена математическая модель процесса декомпозиции в проточном реакторе полного перемешивания с учетом ввода затравки в питание. На основе полученной модели процесса декомпозиции в проточном реакторе составлена модель процесса декомпозиции в каскаде из 14 реакторов проточного типа. Модели составлены в среде программного комплекса ReactOp. Решение уравнения модели выполнялось методом стационирования с использованием метода LSODA для решения обыкновенных дифференциальных уравнений.
Дана краткая характеристика процесса декомпозиции алюминатных растворов. Приведены основные параметры и реакции процесса. Составлена математическая модель процесса с учетом затравки и ее гранулометрического состава. Моделирование проводится в программном комплексе ReactOp.