The authors present research results, the purpose of which is to study the specifics of noble metal mineralization and its genesis in sulfide cobalt-copper-nickel ores of the Kamchatka nickel-bearing province. The paper is dedicated to one of its many ore occurrences called Annabergitovaya Schel (Annabergite Gap). The material composition of platinoid, silver, gold, bismuth and tellurium minerals, as well as sulfarsenides in the ores of this occurrence was investigated. Based on the data of mineral formation sequence and the use of geosensors, conclusions were drawn regarding the genesis of noble metal mineralization. Formation of platinoid minerals, silver and gold at the Annabergitovaya Schel ore occurrence is mainly associated with the epigenetic effect of post-ore granitoids on ore-bearing intrusion rocks of the Dukuk complex of the cortlandite-norite formation and on syngenetic ores. An early association of noble metal minerals is represented by sperrylite, irarsite, and rare unnamed phases of Pt + Ir + Te. Irarsite and Pt + Ir + Te phases were formed at the contact-metasomatic stage. Sperrylite can be assumed to be of magmatic origin. Silver sulfides and tellurides, silver and palladium bismuth tellurides, and native gold were formed at the late, hydrothermal-metasomatic, stage. The occurrence conditions of mineral parageneses, associated with noble metal mineralization, correspond to the formation of shallow-depth metasomatic rocks (≤5 km). Sub-developed quartz-feldspar metasomatites, associated with the formation of early platinoid arsenides and sulfarsenides, are in equilibrium with circumneutral solutions (pH of 4.5-6.5) at temperatures of 350-600 °C. Late hydrothermal association with Pd, Ag and Au minerals is close to propylites and was formed at pH values of 4.5-6.5 and temperature of 150-350 °C.