Submit an Article
Become a reviewer

Search articles for:
Geotechnical Engineering and Engineering Geology

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-07
  • Date accepted
    2023-09-27
  • Date published
    2023-11-29

Isotherm and kinetic adsorption of rice husk particles as a model adsorbent for solving issues in the sustainable gold mining environment from mercury leaching

Article preview

One of the techniques used in extracting gold in small-scale gold mining is mercury amalgamation. However, the use of mercury presents significant health and environmental hazards, as well as suboptimal efficiency in gold extraction. This study explores the possibility of the use of rice husk as a prototype adsorbent for mercury removal from its leaching in mining environments. To support the analysis, the rice husk adsorbent was characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, electron dispersive X-ray spectroscopy, atomic absorption spectrophotometers and Brunauer − Emmett − Teller analysis. To investigate the removal of Hg from aqueous solutions, batch adsorption experiments were conducted, and the efficiency was optimized under various parameters such as contact time, rice husk dosage, and initial concentration of mercury. Kinetic and isotherm investigations were also carried out to gain a better understanding of the adsorption properties. The kinetic adsorption was analyzed using the pseudo-first-order and pseudo-second-order. Furthermore, the isotherm adsorption was analyzed using ten adsorption isotherm models (i.e., Langmuir, Freundlich, Temkin, Dubinin – Radushkevich, Flory – Huggins, Fowler – Guggenheim, Hill – de Boer, Jovanovic, Harkin – Jura, and Halsey). The amount of mercury absorption increased with increasing contact time, adsorbent mass, and initial concentration of mercury. The pseudo-second-order kinetic model is the best model that can be applied to describe the adsorption process. Analysis of the adsorption results obtained shows that the adsorption pattern is explained through the formation of a monolayer without any lateral interaction between the adsorbate and adsorbent. In addition, the formation of multilayers due to inhomogeneous pore distribution also occurs which causes a pore filling mechanism. We found that the isotherm phenomena are near the Jovanovic models with the maximum adsorption capacity) of rice husk found to be 107.299 mg/g. As a result, rice husk could be a promising option for wastewater treatment due to its fast and efficient removal capacity, as well as its affordability and eco-friendliness. The predicted thermodynamic studies using the Flory – Huggins isotherm model show that the adsorption process is endothermic, spontaneous, and physisorption. The impact shows that the utilization of rice husk can be used and fit for the current issues in the sustainable development goals (SDGs).

How to cite: Nandiyanto , A. B. D., Nugraha , W. C., Yustia , I., Ragadhita , R., Fiandini , M., Meirinawati , H., & Wulan , D. R. (2023). Isotherm and kinetic adsorption of rice husk particles as a model adsorbent for solving issues in the sustainable gold mining environment from mercury leaching. Journal of Mining Institute.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-08-16
  • Date accepted
    2023-10-25
  • Date published
    2023-10-27

250 years in the service of the Fatherland: Empress Catherine II Saint Petersburg Mining University in facts and figures

Article preview

In 2023, Empress Catherine II Saint Petersburg Mining University – the first higher technical educational institution in Russia – turns 250 years. Any significant anniversary is an occasion to look back, analyze and evaluate the way traveled. The article analyzes the main achievements of the Mining University on the basis of statistical material from the moment of the foundation of the Mining School to the present day: educational and pedagogical experience in the education and training of mining specialists, scientific and technical intelligentsia; the outstanding contribution of its scientists, graduates to the establishment and development of the mineral resource complex of Russia, in strengthening the country's defense power, the creation of scientific schools. The first part of the article provides data on the number of graduates for different periods of the history of the university, shows the dynamics of their number growth, the peculiarities of learning. According to the authors, over 250 years, about 99 thousand engineers and mining specialists have been prepared in the university. The second part of the article is devoted to the characteristics of the teaching staff, in which a special place is occupied by his favorites, who have become outstanding scientists, academicians and corresponding members of the Academies of Sciences. Those of them who have devoted more than a dozen years of their lives to teaching within the walls of the university are noted. The final part shows the main scientific achievements of the university: the organization of scientific societies, the development of scientific schools, research institutes, etc. About 200 graduates of the Mining University have been awarded State Prizes for their contribution to the development of science and technology. The work of dissertation councils was noted, in which more than 5 thousand dissertations have been defended since 1943.

How to cite: Rudnik , S. N., Afanasev , V. G., & Samylovskaya , E. A. (2023). 250 years in the service of the Fatherland: Empress Catherine II Saint Petersburg Mining University in facts and figures. Journal of Mining Institute, 263, 810-830.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-03-20
  • Date accepted
    2023-09-20
  • Date published
    2023-10-27

Experimental simulation of a system of swamp biogeocenoses to improve the efficiency of quarry water treatment

Article preview

Mining activities were producing large quantities of wastewater contaminated with nitrogen compounds and metals. With insufficient treatment, these pollutants are released into the environment and have a toxic effect on living organisms. Constructed wetlands are now widely adopted as wastewater treatment systems because of the combination of physical, chemical and biological processes for the removal of contaminants. In this study, an experimental system was modeled to improve the efficiency of the quarry wastewater treatment of a mining enterprise by sharing the higher aquatic vegetation: broad-leaved cattail ( Typha latifolia L.), common water-plantain ( Alisma plantago-aquatica L.), jointed rush ( Juncus articulatus L.) and lower aquatic vegetation ( Chlorella sp.). Concentrations of nitrogen compounds and metal were analyzed both in the model and in the treated solution of quarry wastewater for calculation of treatment efficiency. Concentrations of the pollutants in the tissues of the higher aquatic vegetation were analyzed to assess the accumulation capacity and efficiency of translocation of the pollutants. The results of the experimental study showed the practical applicability of the constructed integrated treatment system to reduce the concentration of pollutants in quarry wastewater, as well as increasing the efficiency of treatment by introducing lower aquatic vegetation into the system

How to cite: Pashkevich , M. A., Korotaeva , A. E., & Matveeva , V. A. (2023). Experimental simulation of a system of swamp biogeocenoses to improve the efficiency of quarry water treatment. Journal of Mining Institute, 263, 785-794.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-05-17
  • Date accepted
    2023-08-17
  • Date published
    2023-10-27

Scientific and technical substantiation of the possibility for the organization of needle coke production in Russia

Article preview

Russia is one of the world's leading steel producers, while about 33 % of production comes from the scrap remelted in arc steelmaking furnaces. The graphitized electrodes of SHP and UHP grades, mainly consisting of needle coke, are used for high current loads and temperatures in furnaces. USA, Japan, Korea, and China are focused on needle coke production, where coal (tar and pitch) and petroleum (decantoil), by-products of metallurgical factories and oil refineries, are used as raw materials. Russia's annual demand for needle coke is approximately 100 thousand tons, but all of it is covered by imports. Russia's raw material potential, established by the authors of the article, is more than 5 million tons per year and includes decantoil, coal tar and pitch, and heavy pyrolysis tar. The results of obtaining needle coke from decantoil and heavy pyrolysis tar are given below. The prototypes of needle coke were produced on specially designed delayed coking laboratory units (loading up to 0.25 and 80 kg). Raw materials were modified according to the original technology of Saint Petersburg Mining University, the convergence of target properties of which is confirmed by the results of quality analysis of the obtained needle coke, including after 100-fold scaling. The electrodes were molded from the obtained coke. After standardized stages of firing, mechanical processing and graphitization at 2,800-3,000 °C, the coefficient of linear thermal expansion was less than 1 × 10 –6 К –1 , and the value of specific electrical resistance was 7.1-7.4 μOhm, which proves that the obtained carbon material corresponds in quality to Japanese analogues and Super Premium needle coke.

How to cite: Rudko V. А., Gabdulkhakov , R. R., & Pyagai , I. N. (2023). Scientific and technical substantiation of the possibility for the organization of needle coke production in Russia. Journal of Mining Institute, 263, 795-809.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-01-21
  • Date accepted
    2023-09-22
  • Date published
    2023-10-31

Adaptation of transient well test results

Article preview

Transient well tests are a tool for monitoring oil recovery processes. Research technologies implemented in pumping wells provide for a preliminary conversion of measured parameters to bottomhole pressure, which leads to errors in determining the filtration parameters. An adaptive interpretation of the results of well tests performed in pumping wells is proposed. Based on the original method of mathematical processing of a large volume of field data for the geological and geophysical conditions of developed pays in oil field, multidimensional models of well flow rates were constructed including the filtration parameters determined during the interpretation of tests. It is proposed to consider the maximum convergence of the flow rate calculated using a multidimensional model and the value obtained during well testing as a sign of reliability of the filtration parameter. It is proposed to use the analysis of the developed multidimensional models to assess the filtration conditions and determine the individual characteristics of oil flow to wells within the pays. For the Bashkirian-Serpukhovian and the Tournaisian-Famennian carbonate deposits, the influence of bottomhole pressure on the well flow rates has been established, which confirms the well-known assumption about possible deformations of carbonate reservoirs in the bottomhole areas and is a sign of physicality of the developed multidimensional models. The advantage of the proposed approach is a possibility of using it to adapt the results of any research technology and interpretation method.

How to cite: Martyushev , D. A., Ponomareva , I. N., & Shen , W. (2023). Adaptation of transient well test results. Journal of Mining Institute.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-20
  • Date accepted
    2023-06-22
  • Date published
    2023-10-30

Increasing the quality of zeolite-bearing rocks from Eastern Transbaikalia by applying directed energy

Article preview

Рассмотрены вопросы применения направленного воздействия ускоренными электронами на цеолитсодержащие породы Восточного Забайкалья с целью повышения эффективности отделения цеолитов от вмещающих примесей методом электромагнитной сепарации. Получены результаты по определению эффективности вскрытия цеолитовых минералов с применением воздействия потоком ускоренных электронов, установлены технологические зависимости при обогащении цеолитсодержащих пород. Разработана технологическая схема переработки цеолитсодержащих пород, основанная на применении обработки ускоренными электронами на стадии рудоподготовки, обеспечивающая комплексность использования минерального сырья и позволяющая получать высококачественную цеолитовую продукцию.

How to cite: Razmakhnin , K. K., & Khatkova , A. N. (2023). Increasing the quality of zeolite-bearing rocks from Eastern Transbaikalia by applying directed energy. Journal of Mining Institute.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-10-13
  • Date accepted
    2023-10-11
  • Date published
    2023-10-27

An innovative approach to injury prevention in mining companies through human factor management

Article preview

This study argues that human error has an effect on occupational injury risks in mining companies. It shows through an analysis of existing approaches to occupational risk assessment that it is necessary to develop a quantitative assessment method factoring in individual psychophysiological attributes in order to analyze injury risks posed to miners. The article presents the results of a comprehensive analysis of how workers’ psychophysiological attributes influence their susceptibility to occupational injuries in underground mining conditions. By utilizing statistical data processing methods, such as discriminant and regression analysis, the study develops models to forecast personal injury risks among miners. These quantitative models underlie the proposed method for assessing miners’ susceptibility to injuries. The study outlines an algorithm for the practical application of this method and shows how the method was validated using a training sample. It provides recommendations for managing the human factor, incorporating the results of the proposed method, and emphasizes the importance of implementing a series of protective measures to mitigate the risk of occupational injuries in underground mining operations.

How to cite: Kabanov , E. I., Tumanov , M. V., Smetanin , V. S., & Romanov , K. V. (2023). An innovative approach to injury prevention in mining companies through human factor management. Journal of Mining Institute, 263, 774-784.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-11
  • Date accepted
    2023-09-20
  • Date published
    2023-10-27

Current state of above-ground and underground structures of the Alexander Column: an integral basis for its stability

Article preview

The Alexander Column as a compositional center of the architectural ensemble of Palace Square in Saint Petersburg, Russia, has always been a matter of concern for both the public and specialists due to progressive deterioration of its granite shaft caused by crack formation. The article examines previous studies related to the inspection and restoration of the column's shaft and other parts above ground level, as well as reasons for crack initiation and propagation in the column. An analysis was performed on the anomalies in the Fennoscandian Shield and the structural-tectonic conditions at the Montferrand quarry site, revealing the presence of faults and circular features within the studied area. The research considers N.Hast's measurements of excess tectonic stresses in anomaly zones (southeastern Finland), which acted horizontally and resulted in the development of tensile cracks within the granite massif and later in the column’s shaft after its installation. The most dangerous type of deformation for the Alexander Column is its tilt in the northeast direction, recorded in 1937 and 2000. The article analyzes the construction features of the column's foundations and additional underground elements, as well as soil and groundwater characteristics based on archival data. The contamination history of the underground space is taken into account, and an analogy-based method is used to assess the engineering-geological and hydrogeological conditions of the underground load-bearing structures within the placement zone of the Alexander Column and the New Hermitage buildings. The results of visual observations on the nature of deterioration and deformation of the pavement around the monument, as well as its pedestal, indicating the development of uneven settlement of the foundation, are presented. The article concludes with general recommendations for organizing and implementing comprehensive monitoring to forecast the deformation dynamics of the Alexander Column.

How to cite: Dashko , R. E., & Karpenko , A. G. (2023). Current state of above-ground and underground structures of the Alexander Column: an integral basis for its stability. Journal of Mining Institute, 263, 757-773.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-04
  • Date accepted
    2023-09-20
  • Date published
    2023-10-27

Structure maintenance experience and the need to control the soils thermal regime in permafrost areas

Article preview

The risks of reducing the stability of buildings and structures are increasing in conditions of climate change and the active development of the territories under the influence of natural and anthropogenic factors. The main causes include: loss of the bearing capacity of frozen soils, various geocryological processes, errors at the stages of design, construction and operation of facilities. Main actual task when conducting research and industrial operations in the cryolithozone is monitoring and, if necessary, managing thermal processes in the permafrost layers interacting with facilities. In this article the obtained positive experience of various technologies applying at various stages of the life cycle of civil and industrial facilities was analyzed. It helps to eliminate or prevent the structure deformation or destruction under the influence of climate change. The methods of permafrost stabilization used in the oil and gas industry in process of industrial infrastructure development of the fields have been studied – freezing (cooling) of foundation soils during construction on heterogeneous foundations. The solution to the problems of minimizing accidents when locating production wells in the permafrost zone of the Yamal Peninsula is considered using the example of an oil and gas condensate field and restoring of the temperature regime of perennial unfrozen soils in areas of valve units of main gas pipelines. An assessment of methods used to maintain the industrial and residential infrastructure within the northern municipalities that ensure the functioning of the fuel and energy complex of the Russian Federation in the Arctic was made. The systems of thermal stabilization in the foundations of buildings and industrial facilities built and operated on permafrost soils allow to fully use the high strength and low deformability of frozen grounds. It ensures the state's long-term plans of the industrial development in the Arctic.

How to cite: Brushkov , A. V., Alekseev , A. G., Badina , S. V., Drozdov , D. S., Dubrovin , V. A., Zhdaneev , O. V., Zheleznyak , M. N., Melnikov , V. P., Okunev , S. N., Osokin , A. B., Ostarkov , N. A., Sadurtinov , M. R., Sergeev , D. O., Fedorov , R. Y., & Frolov , K. N. (2023). Structure maintenance experience and the need to control the soils thermal regime in permafrost areas. Journal of Mining Institute, 263, 742-756.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-08-16
  • Date accepted
    2023-10-24
  • Date published
    2023-10-27

Results of complex experimental studies at Vostok station in Antarctica

Article preview

Scientific research in the area close to the Russian Antarctic station Vostok has been carried out since its founding on December 16, 1957. The relevance of work to study the region is steadily increasing, which is confirmed by the Strategy for the Development of Activities of the Russian Federation in the Antarctica until 2030. As part of the Strategy implementation, Saint Petersburg Mining University solves the comprehensive study issues of the Vostok station area, including the subglacial Lake Vostok, related to the development of modern technologies and technical means for drilling glaciers and underlying rocks, opening subglacial reservoirs, sampling water and bottom sediments, as well as carrying out comprehensive geological and geophysical research. For the successful implementation of the Strategy, at each stage of the work it is necessary to identify and develop interdisciplinary connections while complying with the requirements for minimizing the impact on the environment. During the season of the 68th Russian Antarctic Expedition, the staff of the Mining University, along with the current research works , began research of the dynamic interactions between the forces of the Earth, from the deepest depths to the surface glacier. Drilling and research programs have been completed. The drilling program was implemented jointly with colleagues from the Arctic and Antarctic Research Institute at the drilling complex of the 5G well. The research program included: shallow seismic studies, core drilling of snow-firn strata, study of the snow-firn strata petrostructural features, studies of cuttings collection filters effectiveness when drilling snow-firn strata and the process of ice destruction in a reciprocating rotational method, bench testing of an acoustic scanner. As a result of drilling in 5G well at the depth range of 3453.37-3534.43 m, an ice core more than 1 million years old was obtained.

How to cite: Bolshunov , A. V., Vasilev , D. A., Dmitriev , A. N., Ignatev , S. A., Kadochnikov , V. G., Krikun , N. S., Serbin , D. V., & Shadrin , V. S. (2023). Results of complex experimental studies at Vostok station in Antarctica. Journal of Mining Institute, 263, 724-741.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-05-08
  • Date accepted
    2022-07-21
  • Date published
    2023-10-16

Technologies of intensive development of potash seams by longwall faces at great depths: current problems, areas of improvement

Article preview

The results of the analysis of practical experience in the development of potash seams using longwall mining systems at the mines of OAO “Belaruskali” are presented. Positive changes in the technical and economic indicators of mines and an increase in the safety of mining operations were noted with the introduction of resource-saving technologies without leaving the pillars between the excavation columns or with leaving the pillars between the columns with dimensions at which they are destroyed by mining pressure in the goaf. It is noted that the use of mechanized stoping complexes characterized by high energy capacity, combined with large depths of development, is the main reason for the temperature increase in longwalls to values exceeding the maximum permissible air temperature regulated by sanitary standards. Based on production studies, it was concluded that the temperature regime along the length of the longwall face is determined by the temperature of rocks in the developed longwall space, heat emissions from the equipment of the power train, and the temperature of the rock mass ahead of the longwall. The conclusion has been drawn about the feasibility of using developed technological schemes in deep mining conditions, which provide a reduction in longwall temperature by 6-9 °C or more through isolated ventilation of longwall and power trains, as well as heat exchange between the airflow entering the longwall and the rocks in the developed space.

How to cite: Zubov , V. P., & Sokol , D. G. (2023). Technologies of intensive development of potash seams by longwall faces at great depths: current problems, areas of improvement. Journal of Mining Institute.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-06-27
  • Date accepted
    2023-06-20
  • Date published
    2023-10-06

Analysis of the problems of high-quality drinking water extraction from underground water intakes on Vysotsky Island in the Vyborg district of the Leningrad region

Article preview

This article presents the results of drilling, experimental filtration work and laboratory studies aimed at assessing the resources and quality of groundwater in the licensed area of Vysotsky Island located in the Leningrad region, in the Gulf of Finland in accordance with the requirements of regulatory documents. Analysis of the results of hydrochemical studies and their comparison with data on water intakes in adjacent areas gives the right to conclude that it is possible to classify a hydrogeological unit as a different type of resource formation than those located in the surrounding areas. Groundwater in this area is confined to an unexplored deep fractured regional high-pressure zone. According to the received data, the explored water intake can be attributed to a unique groundwater deposit, which has an uncharacteristic composition of groundwater in the north of the Leningrad region, which may be due to the mixing of modern sediments and relict waters of the Baltic glacial lake. The stability of groundwater characteristics is confirmed by long-term monitoring.

How to cite: Nikishin , V. V., Blinov , P. A., Fedorov , V. V., Nikishina , E. K., & Tokarev , I. V. (2023). Analysis of the problems of high-quality drinking water extraction from underground water intakes on Vysotsky Island in the Vyborg district of the Leningrad region. Journal of Mining Institute.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-27
  • Date accepted
    2023-06-20
  • Date published
    2023-09-13

Geomechanical analysis of the impact of the new tunnels construction in the vicinity of existing underground subway structures on the state of the soil massif

Article preview

The specificity of the behavior of the soil massif near the tunnel under construction in difficult mining conditions is considered. It was revealed through the joint interpretation of the results of geophysical measurements in the tunnel and computer simulation. The results of field geophysical studies to identify areas of decompacted soil behind the lining in two existing tunnels during successive drilling of two new tunnels under them are described. A method to analyze the response of the lining to impact was used providing for the calculation of its energy. It has been established that the decompaction zones are mainly located in the lateral lower areas of the tunnel. To substantiate the mechanism of formation of cavities, computer simulations were carried out using the finite element method with the COMSOL Multiphysics software. The finite element model is built on the Drucker – Prager criterion in the variant of a two-dimensional problem statement. It is shown that at the initial position of two old tunnels, the areas of decompaction can develop mainly on the sides. The position of the zones changes significantly when excavating two new tunnels. Soil decompaction zones appear between the tunnels and there is a tendency for the areas to spread to the upper point of the tunnel. According to geophysical data time delays in the impact of new tunnels on the existing line are noted, as well as a decrease in the size of decompacted soil areas over time. There is a satisfactory agreement between the positions of the decompaction areas and voids obtained by the geophysical method and the results of numerical simulation.

How to cite: Nabatov , V. V., & Voznesenskii , A. S. (2023). Geomechanical analysis of the impact of the new tunnels construction in the vicinity of existing underground subway structures on the state of the soil massif. Journal of Mining Institute.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-17
  • Date accepted
    2023-03-04
  • Date published
    2023-09-01

Improvement of concentrate quality in flotation of low-rank coal

Article preview

Percentage of high-rank coal with low content of ash, moisture, and sulfur in total coal production output is low. Most of the produced coal has a low quality (lignite, bituminous coal: long-flame and fiery). Under increasing requirements for ecological cleanness of coal, the efficient use of coal products is only possible after improvement of their processing properties. The authors discuss the enhancement of flotation efficiency of low-rank coal using the mechanism of physisorption of a collecting agent in particle – bubble attachment. It is explained why the yield of concentrate with low ash content increases as a result of combination of collectors having different physical properties. It is shown that the surface activity of a heteropolar agent relative to the gas – liquid interface and the adsorption density of the agent govern its collecting properties. Based on the recovery – surface activity relationship, the correlation is found between the collecting activity of a chemical compound and the structure of its molecules. The combination of the collectors with different surface activity enables adjusting collectability and selectivity of the blend. The physisorption mechanism of collectors can be a framework for developing recommendations on modification of concentrate yield and ash content, and on selection of optimized ratios of surface activities of miscible collectors relative to the gas – liquid interface.

How to cite: Kondratev , S. A., & Khamzina , T. A. (2023). Improvement of concentrate quality in flotation of low-rank coal. Journal of Mining Institute.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-14
  • Date accepted
    2023-07-25
  • Date published
    2023-08-28

A method of determining the errors of segmented GRID models of open-pit mines constructed with the results of unmanned aerial photogrammetric survey

Article preview

The methodology of building a digital elevation model based on the results of aerial photogrammetric survey from an unmanned aircraft is proposed, which is based on the division of the initial point cloud into equal segments. This allows, having made an assumption of the linear character of change of height of points in a separate segment, to approximate them by separate planes. RMS errors of the models from the survey data were calculated according to the scattering of the points in relation to the approximating surfaces, which made it possible to reveal the dependence of the model construction error relative to the sizes of their constituent segments, as well as to propose a method for filtering the cells containing outliers with respect to the expected model error. The proposed method was tested on the models of three mining objects – limestone quarry, phosphogypsum dump, and peat cut. The experimental results showed a multiple reduction in model error compared to standard DEM models providing the required accuracy for mining documentation.

How to cite: Vystrchil , M. G., Gusev , V. N., & Sukhov , A. K. (2023). A method of determining the errors of segmented GRID models of open-pit mines constructed with the results of unmanned aerial photogrammetric survey. Journal of Mining Institute, 262, 562-579.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-19
  • Date accepted
    2023-03-04
  • Date published
    2023-08-29

Impact of carbon dioxide on the main geotechnical quality criteria and preparation cost of cemented paste backfill

Article preview

There is a global upsurge in the use of cemented paste backfill (CPB) for various mining functions. However, the cost of the Portland cement binder is prohibitive, thus warranting strategies to reduce cement usage without overly diminishing the CPB quality. Since carbon dioxide is used for patented sand moulding processes, this study is premised on that physicochemical ability of CO2 to enhance the curing of consolidated inorganic materials. It evaluated the impact of carbon dioxide on the uniaxial compressive strength UCS and preparation cost of CPB standard samples (ASTM C109). The preparation cost was delimited to the purchase cost of the Portland cement. The backfill material was silica sand tailings with 4.5 wt.% Portland cement binder and a water-cement ratio of 7.6. Distilled water of pH 5.4 was used for the control samples while variable amounts of carbon dioxide were dissolved in distilled water to generate carbonated mixing water with pH values of 3.8; 4 and 4.2. The lower the carbonated water pH, the higher is the CO2 concentration. UCS tests were conducted on the samples after curing for 3, 7, 28, and 90 days. There was an observable increase in the UCSs and reduction in curing time with increasing carbon dioxide. Samples prepared with carbonated water of pH 3.8 had almost double the strength of those prepared with pure distilled water of pH 5.4, implying that more dissolved CO2 corresponds to higher CPB strength. This is supported by the trendline equations for the graphical simulation of strength on curing time. Thus, CPB with much less binder can be expected to attain the requisite UCS if carbon dioxide is incorporated. The average reduction in Portland cement consumption was 0.61 %, which translates to a cost saving of the same percentage points. If calculated over the operational life of a mine, this is a massive saving of millions of dollars.

How to cite: Bukasa , P. M., Mashingaidze , M. M., & Simasiku , S. L. (2023). Impact of carbon dioxide on the main geotechnical quality criteria and preparation cost of cemented paste backfill. Journal of Mining Institute.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-01-20
  • Date accepted
    2022-07-21
  • Date published
    2023-07-27

Tribodynamic aspects of the resource of electric submersible vane pumps for oil production

Article preview

The operation of electric submersible vane pumps for oil production is accompanied by the presence of solid particles, corrosive substances, asphalt-resin-paraffin deposits in the reservoir fluid, leading to changes in performance characteristics and equipment failures. The reduction of the resource as a result of this is accompanied by an increase in the costs of repair and replacement of equipment. The main processes that negatively affect the failure are the wear of the seals of the working stages, the pump plain bearings and vibration, the level of which can significantly exceed the initial level. A test bench and methodology for testing pump sections for wear in water with an abrasive and simultaneous registration of vibration characteristics have been developed. Two main forms of wear of radial seals have been identified – one-sided and equal-dimensional. The one-sided form of sleeve wear is caused by synchronous shaft precession, whereas the equal-dimensional one is an asynchronous precession, and the vibration level increases with increasing wear. The wear distribution of radial seals along the length of the pump correlates with the shape of the elastic shaft line. The wear of the axial seals does not significantly increase the vibration level. During wear the frequency spectrum of vibrations changes; there occurs a frequency that can serve as a diagnostic sign of ultimate wear of the pump. The calculated dependence of the vibration velocity on the wear of the radial seals of the working stages is obtained, which makes it possible to predict the onset of a failure of functioning.

How to cite: Smirnov , N. I., Drozdov , A. N., & Smirnov , N. N. (2023). Tribodynamic aspects of the resource of electric submersible vane pumps for oil production. Journal of Mining Institute.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-08-24
  • Date accepted
    2023-02-15
  • Date published
    2023-08-28

Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems

Article preview

The article is devoted to the analysis of approaches to modeling the stress-strain state of a block rock mass in the vicinity of a single mine workings and in the area of rock cantilever influence during the development of the Khibiny apatite-nepheline deposits. The analysis of the existing in international engineering practice ideas about tectonic disturbances as a geomechanical element and the experience of predicting the stress-strain state of a block rock mass was carried out. On the basis of the analysis, the formulation of the basic modeling tasks is carried out and its main results are presented. Methodological recommendations for solving similar problems were developed.

How to cite: Protosenya , A. G., Belyakov , N. A., & Bouslova , M. A. (2023). Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems. Journal of Mining Institute, 262, 619-627.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-04-03
  • Date accepted
    2023-02-03
  • Date published
    2023-06-23

Specifics of geotechnical risk control in the design of underground structures

Article preview

The underground space development is associated with the emergence of complex and dangerous situations, often leading to accidents. The condition for their development is the potential geotechnical risks. High-quality execution and analysis of design work at all the stages of design, starting from the early stages, is one of the effective ways to control risks. Clarification of the characteristics and features of the rock mass adjacent to the projected underground structure makes it possible to identify the potential cause of the occurrence of an adverse event with a certain probability during the construction and operation of an underground structure. The purpose of a qualitative risk analysis is to identify risk factors in underground construction. The value of the total geotechnical risk, expressed by the sum of each of the possible risks, should be numerically estimated at the design stage of a specific underground facility. At the same time, it is extremely important to develop a methodology for managing geotechnical risks, which would make it possible to assess their probability of development at an early stage of project preparation and propose measures to reduce or prevent them. This technique is given in the article. The results of the study conducted in accordance with the presented methodology showed that geotechnical risk control proved an effective method in preventing accidents during underground construction .

How to cite: Kulikova , E. Y., Polyankin , A. G., & Potokina , A. M. (2023). Specifics of geotechnical risk control in the design of underground structures. Journal of Mining Institute.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-11
  • Date accepted
    2023-02-20
  • Date published
    2023-08-28

Application of the support vector machine for processing the results of tin ores enrichment by the centrifugal concentration method

Article preview

The relevance of the research is due to the acquisition of new knowledge about the features of the applicability of the support vector machine, related to machine learning tools, for solving problems of mathematical modeling of mining and processing equipment. The purpose of the research is a statistical analysis of the results of semi-industrial tests of the Knelson CVD technology on tin raw materials using the support vector machine method and the development of mathematical models suitable for further optimization of the technological parameters of the equipment. The objects of research were the products obtained as a result of the operation of hydro-cyclones, as well as the technological parameters of the operation of centrifugal concentrators. The work uses classical methods of mathematical statistics, the least squares method for constructing a linear regression model, the support vector machine implemented on the basis of the Scikit-learn library, as well as the method of verifying the resulting models based on the ShuffleSplit library. A general description of the process of testing the Knelson concentrator with continuous controlled unloading in relation to the enrichment of tin ores is presented. The results obtained were processed using the support vector machine. Regression models are obtained in the form of polynomials of the second degree and in the form of radial basis functions. A significant non-linearity is shown in the dependence between the content of the valuable component in the tailings and the values of the technological parameters of the apparatus.

How to cite: Burdonov , A. E., Lukyanov , N. D., Pelikh , V. V., & Salov , V. M. (2023). Application of the support vector machine for processing the results of tin ores enrichment by the centrifugal concentration method. Journal of Mining Institute, 262, 552-561.
1 - 20 of 94 items 1 2 3 4 5 > >>