-
Date submitted2022-03-03
-
Date accepted2022-04-27
-
Date published2022-07-26
Peculiarities of rare-metal mineralization and genetic relationship of mineral associations in the eastern rim of Murzinsko-Aduysky anticlinorium (the Ural Emerald Belt)
- Authors:
- Mikhail P. Popov
The paper presents features of the location and composition, as well as a generalization of data on the age of rare-metal mineralization developed at the deposits and occurrences of rare metals and gemstones in the eastern rim of Murzinsko-Aduysky anticlinorium, within the Ural Emerald Belt, which is a classic ore and mineralogical object and has been studied for almost two hundred years. With a significant number and variety of prospecting, research and scientific works devoted mainly to emerald-bearing mica complexes and beryl mineralization, as well as rare-metal pegmatites, scientific literature has so far lacked generalizations on the formation of numerous mineral associations and ore formations that represents a uniform genetic process in this ore district. The aim of the work is a comprehensive geological-mineralogical analysis of mineral associations of the eastern rim of Murzinsko-Aduysky anticlinorium and studying their age, formation conditions and characteristic features to determine the possibility of expanding and using the mineral resource base of the Urals through developing new prognostic and prospecting criteria for rare-metal and gemstone ore formations and creating the new devices for promising objects prospecting
-
Date submitted2022-03-14
-
Date accepted2022-05-13
-
Date published2022-07-26
Unique titanium Deposits of Timan: genesis and age issues
The article critically analysesthe hypotheses about the formation, age, and sources of material of large Timan titanium deposits, which were previously considered ancient buried placers formed along the weathering crusts of the Riphean shales. We discuss an alternative hydrothermal-metamorphic hypothesis about the formation of these deposits and the source of ore material. It is established that the incoming zircon of different ages (570-3200 Ma), as well as two other geochronometers, rutile and monazite, underwent a thermal effect common for all varieties as a result of a hydrothermal process about 600 Ma ago. According to modern concepts, the closing temperature of the U-Pb system in rutile exceeds 500 °С, which suggests high-temperature conditions for the hydrothermal processing of rutile during the formation of the considered deposits in the Riphean.
-
Date submitted2022-03-20
-
Date accepted2022-05-25
-
Date published2022-07-26
Ophiolite association of Cape Fiolent (western part of the Mountainous Crimea) – the upper age constraint according to the U-Pb isotope dating of plagiorhyolites (Monakh Cliff)
The article presents the results of U-Pb isotope dating (SHRIMP-II, VSEGEI, Saint Petersburg) of zircon crystals extracted from plagiorhyolites of the Monakh Cliff in the area of Cape Fiolent in the western part of the Mountainous Crimea (southern suburb of Sevastopol). a concordant age estimate of 168.3±1.3 Ma was obtained from 20 zircon crystals. It exactly corresponds to the Bajocian/Bathonian boundary of the Middle Jurassic according to the International Chronostratigraphic Chart (February 2022 version). The available results of isotope dating of igneous rocks from the Mountainous Crimea, as well as their geochemical typification are synthesised. The plagiorhyolites of the Monakh Cliff in the area of Cape Fiolent are spatially, and most likely paragenetically, associated with the wallrock (Cape Vinogradny) and ore (Heraclea Plateau on the cognominal peninsula) massive sulphide formations, as well as pillow basalts, gabbroids, and serpentinized hyperbasites, combined into the ophiolite association of Cape Fiolent. The obtained dating is the upper age limit for the entire ophiolite association of Cape Fiolent.
-
Date submitted2022-03-21
-
Date accepted2022-06-15
-
Date published2022-07-26
Ti-Fe-Cr spinels in layered (stratified) complexes of the western slope of the Southern Urals: species diversity and formation conditions
- Authors:
- Sergey G. Kovalev
- Sergey S. Kovalev
Materials on geochemistry and ore Fe-Ti-Cr mineralization of rocks composing layered (stratified) bodies of the western slope of the Southern Urals are presented. A detailed analysis showed similarity in the redistribution of REE, noble metals, and Fe-Ti-Cr mineralization of practically all parameters in rocks of the Misaelga and Kusin-Kopan complexes. It has been established that the parameters of metamorphism, which influenced components redistribution in Fe-Ti-Cr minerals of the layered complexes, correspond to Misaelga – T = <550-750 °С, P = 0.1-2.8 kbar, Kusin-Kopan – T = <550-630 °С, P = 0.3-0.7 kbar, and Shuidinsky complexes – T = <550-760 °С, P = 0.5-2.5 kbar. The result of modelling the melt crystallization process showed that the Kusin-Kopan complex is an intrusive body with an ultramafic horizon in the idealized cross-section. Due to collisional processes, the lower part of the intrusion has been detached from the upper part. The proposed structure of the Kusin-Kopan complex sharply increases its prospects for such types of minerals as platinum group minerals + sulphide copper-nickel mine-ralization and/or chromites.
-
Date submitted2022-03-22
-
Date accepted2022-06-15
-
Date published2022-07-26
Gold in biogenic apatites of the Baltic-Ladoga phosphorite basin
- Authors:
- Sergey B. Felitsyn
- Nadezhda A. Alfimova
The distribution of gold in biogenic apatites from the Ordovician deposits in the northwest of the East European Platform shows that the maximum concentration of gold in apatites is found within the Ladoga-Baltic suture zone. Gold mineralization has a superimposed character, which is confirmed by the dependence of the gold content on the size of apatite particles and a number of isotope geochemical systematics in biogenic apatites. Gold is present in the form of high fineness particles to 20 µm in size on the surface of biogenic apatite fragments (phosphate brachiopod shells and conodont elements) and is easily extracted. In 10 % of samples of biogenic apatites, the total content of rare earth elements is more than 1 wt.%.
-
Date submitted2022-03-31
-
Date accepted2022-05-11
-
Date published2022-07-26
Carbonatite complexes of the South Urals: geochemical features, ore mineralization, and geodynamic settings
- Authors:
- Irina L. Nedosekova
The article presents the results of study of the Ilmeno-Vishnevogorsky and Buldym carbonatite complexes in the Urals. It has been established that the carbonatites of the Ilmeno-Vishnevogorsky complex are represented by high-temperature calciocarbonatites (sövites I and II) with pyrochlore ore mineralization. U-Ta-rich populations of uranium pyrochlores (I) and fluorocalciopyrochlores (II) crystallize in miaskite-pegmatites and sövites I; fluorocalciopyrochlores (III) and Sr-REE-pyrochlores (IV) of late populations form in sövites II. In the Buldym complex, along with high-temperature calciocarbonatites containing fluorocalciopyrochlore (III), medium-temperature varieties of magnesiocarbonatites with REE-Nb mineralization (monazite, niobo-aeschynite, columbite, etc.) are widespread. Miaskites and carbonatites of the Urals are characterized by high contents of LILE (Sr, Ba, K, Rb) and HFSE (Nb, Ta, Zr, Hf, Ti), which are close to the contents in rift-related carbonatite complexes of intraplate settings and significantly differ from synorogenic collisional carbonatite complexes. The Ural carbonatite complexes formed on continental rift margins during the opening of the Ural Ocean at the time of transition from extensional to compressional tectonics. Later on, they were captured and deformed in the suture zone as a result of collision. Plastic and brittle deformations, anatexis, recrystallization of rocks and ores of carbonatite complexes in the Urals are associated with orogenic and post-collision settings.
-
Date submitted2022-04-06
-
Date accepted2022-06-15
-
Date published2022-07-26
Geological and structural position of the Svetlinsky gold deposit (Southern Urals)
The paper presents the geological and structural position of the large Svetlinsky gold deposit in the Kochkar anticline (Southern Urals), localized in the zone of the Late Paleozoic (D 3 ) deep thrust of the western dip. The study confirms and clarifies the notion of its multiphase and polychronism. The thrust caused bending moments in its wings, subsidence of the lying crust, emergence of a shallow marine basin with rapid accumulation of terrigenous carbonate sediments (C 1 v), and formation of numerous landslide structures. The heating of rocks in the anticline core was accompanied by granitization and dome formation. A small Svetlinsky dome formed in the immediate vicinity of the thrust, creating a thermobaric gradient field (С 2 ). The zone of dome dynamic influence also includes the adjoining thrust area, complicated by a series of sub-vertical thrusts of sub meridional strike and numerous steeply dipping subparallel cracks of the latitudinal strike, synchronously filled with vein quartz and accompanied by hydrothermal metasomatic rock transformations. The formation of the gold deposit occurred during the post-collisional relaxation stage (from P 1 to, probably, the Early Jurassic). The association of gold mineralization with the Svetlinsky dome is indicated by the presence of native gold in Neogene ravine placers in the dome area and marbles of the Svetlinsky deposit, in association with fluorite, F-phlogopite, Cr-muscovite, pink topaz, pure quartz, and native sulphur. The presence of native gold in Neogene ravine placers in the dome area and marbles of the Svetlinsky deposit, in association with fluorite, F-phlogopite, Cr-muscovite, pink topaz, pure quartz, and native sulphur, indicates the association of gold mineralization with the Svetlinsky dome.
-
Date submitted2022-04-13
-
Date accepted2022-06-15
-
Date published2022-07-26
Thermal history of diamond from Arkhangelskaya and Karpinsky-I kimberlite pipes
This work studies and compares the main morphological, structural, and mineralogical features of 350 diamond crystals from the Karpinsky-I and 300 crystals of the Arkhangelskaya kimberlite pipes. The share of crystals of octahedral habit together with individual crystals of transitional forms with sheaf-like and splintery striation is higher in the Arkhangelskaya pipe and makes 15 %. The share of cuboids and tetrahexahedroids is higher in the Karpinsky-I pipe and stands at 14 %. The share of dodecahedroids in the Arkhangelskaya and Karpinsky-I pipes are 60 % and 50 %, respectively. The indicator role of the nitrogen-vacancy N3 center active in absorption and luminescence is shown. Crystals with the N3 absorption system have predominantly octahedral habit or dissolution forms derived from the octahedra. Their thermal history is the most complex. Absorption bands of the lowest-temperature hydrogen-containing defects (3050, 3144, 3154, 3188, 3310 cm −1 , 1388, 1407, 1432, 1456, 1465, 1503, 1551, 1563 cm −1 ), are typical for crystals without N3 system, where in the absorption spectra nitrogen is in the form of low-temperature A and C defects. The above mentioned bands are registered in the spectra of 16 % and 42 % of crystals from the Arkhangelskaya and Karpinsky-I pipes, respectively. The diamond of the studied deposits is unique in the minimum temperature (duration) of natural annealing. Based on a set of features, three populations of crystals were distinguished, differing in growth conditions, post-growth, and thermal histories. The established regularities prove the multi-stage formation of diamond deposits in the north of the East European Platform and significant differences from the diamonds of the Western Cisurals. The results suggest the possibility of the existence of primary deposits dominated by diamonds from one of the identified populations.
-
Date submitted2022-04-11
-
Date accepted2022-06-15
-
Date published2022-07-26
Magma feeding paleochannel in the Monchegorsk ore region: geochemistry, isotope U-Pb and Sm-Nd analysis (Kola region, Russia)
A comprehensive study of a 340 m thick lenticular-sheet body of ultramafic composition penetrated by structural well M-1 at a depth of about 2.2 km was accomplished. Its main volume is composed of plagioharzburgite; fine-grained rocks of norite and orthopyroxenite chilling zones are preserved on endocontacts. The rocks of the body are similar in composition to the rocks near the underlying ore-bearing layered intrusion – the Monchepluton. The age of intrusion of the ultramafic body is 2510 ± 9 Ma (U-Pb, ID-TIMS, zircon) and, taking into account analytical errors, is comparable with the formation period of the Monchepluton (2507-2498 Ma). According to the study of the Sm-Nd system in rocks and minerals, a positive value of the e Nd (+1.1) parameter was established, similar to that in dunites and chromitites of the Monchepluton. Based on these results, the ultramafic body penetrated at depth was assigned to the magma feeding paleochannel through which the ultramafic, weakly contaminated magma entered the overlying magma chamber. This body is a unique example of a magma-feeding system for the ore-bearing layered intrusion of Precambrian age.
-
Date submitted2022-04-12
-
Date accepted2022-05-25
-
Date published2022-07-26
Rare minerals of noble metals in the collection of the Mining Museum: new data
Modern analytical methods (optical and electron microscopy, X-ray microanalysis) were used to study the unique samples of sulfide ores from the Norilsk ore field from the Mining Museum collections of Saint Petersburg Mining University. Samples containing rare minerals of silver and platinum-group metals (sobolevskite, urvantsevite, sperrylite, argentopentlandite, froodite, kotulskite, and others) were studied. The chemical composition, grain sizes, aggregates, and mineral associations of more than ten noble metal minerals have been refined. The efficiency of combining various methods of electron microscopy and X-ray microanalysis for studying samples of this type is shown. The results of the work made it possible to obtain high-quality images of rare minerals, to detail information on museum objects, and to compile their scientific description. The conducted research showed the relevance of studying museum objects from known deposits of complex genesis and mineral composition in order to find and describe the samples with rare minerals.
-
Date submitted2022-04-17
-
Date accepted2022-05-25
-
Date published2022-07-26
Geochemistry of beryl varieties: comparative analysis and visualization of analytical data by principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE)
A study of the trace element composition of beryl varieties (469 SIMS analyses) was carried out. Red beryls are distinguished by a higher content of Ni, Sc, Mn, Fe, Ti, Cs, Rb, K, and B and lower content of Na and water. Pink beryls are characterized by a higher content of Cs, Rb, Na, Li, Cl, and water with lower content of Mg and Fe. Green beryls are defined by the increased content of Cr, V, Mg, Na, and water with reduced Cs. A feature of yellow beryls is the reduced content of Mg, Cs, Rb, K, Na, Li, and Cl. Beryls of various shades of blue and dark blue (aquamarines) are characterized by higher Fe content and lower Cs and Rb content. For white beryls, increased content of Na and Li has been established. Principal Component Analysis (PCA) for the CLR-transformed dataset showed that the first component separates green beryls from other varieties. The second component divides pink and red beryls. The stochastic neighborhood embedding method with t-distribution (t-SNE) with CLR-transformed data demonstrated the contrasting compositions of green beryls relative to other varieties. Red and pink beryls form the most compact clusters.
-
Date submitted2022-04-18
-
Date accepted2022-05-25
-
Date published2022-07-26
U-Pb (SHRIMP-RG) age of zircon from rare-metal (Li, Cs) pegmatites of the Okhmylk deposit of the Kolmozero-Voron’ya greenstone belt (northeast of the Fennoscandian shield)
The results of isotopic and geochronological study of zircon from rare-metal pegmatites of the Okhmylk deposit are presented. There were no reliable data on the age of lepidolite-spodumene-pollucite pegmatites of this and the other deposits spatially located within the Archean Kolmozero-Voron’ya greenstone belt. The earlier estimates of the pegmatite age indicate a broad time range from 2.7 to 1.8 Ga. Zircon in the studied pegmatites is characterized by inner heterogeneity, where core and rim zones are distinguished. Minor changes are observed in the core zones, they have a spotted structure and contain numerous uranium oxide inclusions. According to X-ray diffraction analysis, zircon crystallinity is preserved completely in these areas. Complete recrystallization with modification of the original U-Pb isotopic system occurred in the zircon rims. New U-Pb (zircon) isotopic and geochronological data of 2607±9 Ma reflect the time of crystallization of pegmatite veins in the Okhmylk deposit. Isotopic data with ages of ~1.7-1.6 Ga indicate later hydrothermal alteration. The obtained results testify to the Neo-Archean age of the formation of the Okhmylk deposit 2.65-2.60 Ga, reflecting the global age of pegmatite formation and associated the world's largest rare-metal pegmatite deposits.
-
Date submitted2022-04-18
-
Date accepted2022-06-15
-
Date published2022-07-26
Results and prospects of geological mapping of the Arctic shelf of Russia
- Authors:
- Evgeny A. Gusev
The results of compiling the sets of the State Geological Map at a scale of 1:1,000,000 for the Arctic continental shelf of Russia are analyzed. Results are summed up, and the main problems of geological mapping are outlined. The results of geological and geophysical studies of the Arctic Ocean are of great importance for deciphering the geological evolution. The Arctic shelf is the widest shelf in the world, while the spreading ocean basin is one of the narrowest and is characterized by anomalous structural features. The main problems of geological mapping include identification the sedimentary cover/folded basement boundary, interpretation the geodynamic evolution of the shelf and adjacent ocean, determining the rates of sedimentation and stratigraphic subdivision of the sedimentary cover due to a small number of key boreholes. It is promising to further study problem areas with unclear features of geological structure as well as small-scale mapping in areas of industrial development on the Arctic continental shelf.
-
Date submitted2022-05-04
-
Date accepted2022-06-15
-
Date published2022-07-26
Prospecting models of primary diamond deposits of the north of the East European Platform
As a result of a comprehensive study of the geological structure and diamond presense of the northern part of the East European Platform, generalization of the data accumulated by various organizations in the USSR, the Russian Federation, and other states, three main prospecting models of primary diamond deposits have been identified and characterized: Karelian, Finnish, and Arkhangelsk. Geological, structural, mineralogical, and petrographic criteria of local prediction, as well as the features of the response of kimberlite and lamproite bodies in dispersion haloes and geophysical fields, are considered using known examples, including data on the developed M.V.Lomonosov and V.P.Grib mines. It is shown that the most complicated prospecting environments occur in the covered areas of the Russian Plate, where, in some cases, the primary diamond-bearing rocks are similar in their petrophysical properties to the host formations. The buried dispersion haloes of kimberlite minerals in the continental Carboniferous and Quaternary deposits are traced at a short distance from the sources. Differences in the prospecting features of magnesian (Lomonosov mine) and ferromagnesian (Grib mine) kimberlites are also shown. Conclusions about the diamond potential of the model objects of various types are given in this paper.
-
Date submitted2022-04-14
-
Date accepted2022-07-21
-
Date published2022-07-13
Mullite production: phase transformations of kaolinite, thermodynamics of the process
The growing demand for mullite raw materials, which meet industrial requirements originates the search for new and alternative sources, as well as efficient technologies for obtaining the target products (nanocomposites). The article suggests a method for obtaining mullite from kaolinite experimentally (Vezhayu-Vorykvinsky deposit, Russia). Structural kaolinite transformations (Al-Si-O-Me system), mineral phases transformations, and thermodynamics of the process have been studied. Based on the estimation of the thermodynamics of the reactions, the preferable reaction of mullite formation was determined. The article shows, that formation of the target product, mullite nanocomposite, has several intermediate phases (metakaolinite, pseudomullite). The transformations of the initial kaolinite structure include the removal of structural water and separation of the silica-oxygen tetrahedral and alumina-oxygen octahedral layers, the decomposition into free oxides, breaking of bonds between the silica-oxygen tetrahedrons and the partial increase in the coordination number of aluminium ions, the formation of mullite and cristobalite from free oxides. The proposed approach controls the ratio of Al 2 O 3 and SiO 2 phases at certain stages, which will further improve the mechanical and other properties of the matrix of the obtained raw materials for the target prototypes of industrial products.
-
Date submitted2022-02-18
-
Date accepted2022-05-25
-
Date published2022-07-13
Remote sensing techniques in the study of structural and geotectonic features of Iturup Island (the Kuril Islands)
The article presents structural and geotectonic features of Iturup Island, the largest island in the Greater Kuril Ridge, a unique natural site, which can be considered as a geological reference. The structural and geotectonic analysis carried out on the basis of a comprehensive study of the new Earth remote sensing data, maps of anomalous geophysical geophysical fields, and other geological and geophysical materials using modern modelling methods made it possible for the first time to identify or clarify the location of previously discovered discontinuous faults, typify them and determine the kinematics, as well as to establish a more reliable spatial relationship of the identified structures with magmatism with the stages of the geological development of the region. The constructed diagram of the density distribution of the zones with increased tectonic fracturing shows a significant correlation between the distribution of minerals and weakened areas of the Earth's crust and can be used as an alternative method for predicting minerals in the study region, especially in remote and hard-to-reach areas. The presented approach can be extended to the other islands of the Greater Kuril Ridge, thereby bringing research geologists closer to obtaining the answers to questions about the features of the geotectonic structure and evolution of the island arc. The use of customized software products significantly speeds up the process of interpreting a large array of geological and geophysical data.
-
Date submitted2022-05-02
-
Date accepted2022-05-25
-
Date published2022-07-13
Features of olivine crystallization in ordinary chondrites (Saratov meteorite): geochemistry of trace and rare earth elements
The paper discusses the geochemistry of major (EPMA) and trace (SIMS) elements in olivine of porphyritic, nonporphyritic chondrules, and the matrix of equilibrated ordinary chondrite Saratov (L4). Olivine corresponds to forsterite and is rather heterogeneous (Fo 73-77). No differences in the content of the major elements in the olivine of the chondrule and the matrix of the meteorite were found. However, the content of major and trace elements in olivine within chondrules varies considerably; high values found in olivine from barred chondrules. Olivine from porphyritic chondrules and the matrix of the Saratov meteorite have similar concentrations of trace elements. High concentrations of refractory (Zr, Y, Al) and moderately volatile (Sr and Ba) trace elements in barred olivine chondrule indicate the chondrule melt formation due to the melting of precursor minerals and its rapid cooling in the protoplanetary disk, which is consistent with the experimental data. The olivine of the chondrules center of the Saratov meteorite differs from the olivine of the chondrules rims and meteorite matrix by the increased values of the Yb/La ratio. No relict grains and magnesian cores of olivine were found in meteorite chondrules. Individual grains in the chondrules are distinguished by their enrichment in trace elements relative to the rest of the olivine grains in the chondrule.
-
Date submitted2022-04-04
-
Date accepted2022-05-13
-
Date published2022-07-13
Distribution of trace elements controlled by sector and growth zonings in zircon from a miaskite pegmatite of the Vishnegorsky massif, the Southern Urals
Data on the content and distribution of trace and rare-earth elements (SIMS method) in sectors and growth zones of a large zircon crystal from miaskite pegmatites of the Vishnegogorsky massif are presented. The morphology of the zircon crystal is a combination of a dipyramid {111} and prism {010}. It has been established that the growth sector of dipyramid {111} is characterized by almost one order of magnitude higher contents of Y, Nb, REE, Th; higher Th/U and Eu/Eu* values; REE distribution spectra are flatter compared to prism {010} growth sector. A regular decrease in the content of trace and rare-earth elements in the direction from the central zone to the marginal zone of crystal growth was revealed. A smooth regression of zircon crystallization temperature of zircon from 960 °C in the central zone to 740 °C in the marginal zone of the dipyramid sector and 700-650 °C in the prism sector has been revealed, which may be a reflection of thermal evolution of the crystallization process. It is assumed that crystallization of the central zone of zircon occurred at early stages from a relatively trace-еlement-rich melt. The crystallization was completed at lower temperatures, probably, simultaneously with the formation of REE-concentrating minerals, which resulted in natural decrease of content of trace and rare-earth elements in the melt and, consequently, in zircon crystallizing from it.
-
Date submitted2021-06-08
-
Date accepted2021-11-30
-
Date published2021-12-17
Management of groundwater resources in transboundary territories (on the example of the Russian Federation and the Republic of Estonia)
Groundwater, as a source of water supply, the most important mineral and geopolitical resource, , is often the only source of high-quality drinking water that is protected from pollution under conditions of increasing deterioration of surface water quality. Transboundary groundwaters are the focus of hydrogeological researchers for a number of reasons, including the reduction and pollution of water resources as a result of economic activities. The increased controversy between states over transboundary water issues has necessitated the development of international legal documents on issues related to water conflict prevention and the sustainable use of fresh water. As part of the analysis of the problem of legal regulation of groundwater extraction from transboundary aquifers and complexes, it is proposed to consider this aspect on the example of Russia. The problems of regulation of rational use and protection of fresh water in the bilateral treaties of the Russian Federation were revealed; a methodology for the management of groundwater extraction in the territory of the transboundary aquifer was developed, the size, parameters, and factors influencing the formation of the transboundary zone have been determined (based on research and analysis of water intake activities in the border areas of the Russian Federation and the Republic of Estonia) were determined.
-
Date submitted2021-10-19
-
Date accepted2021-11-30
-
Date published2021-12-17
Potential technological solution for sampling the bottom sediments of the subglacial lake Vostok: relevance and formulation of investigation goals
The subglacial Lake Vostok in Antarctic is a unique natural phenomenon, its comprehensive study involves sampling of water and bottom surface rocks. For further study of the lake, it is necessary to drill a new access well and develop environmentally safe technologies for its exploration. This article discusses existing and potential technologies for sampling bottom surface rocks of subglacial lakes. All these technologies meet environmental safety requirements and are conducive for sampling. The authors have proposed an alternative technology, using a walking device, which, due to its mobility, enables selective sampling of rocks across a large area from a single access well. The principal issues, related to the implementation of the proposed technology, are investigated within this article. This report is prepared by a team of specialists with many years of experience in drilling at the Vostok Station in Antarctic and in experimental work on the design of equipment and non-standard means of mechanization for complicated mining, geological and climatic conditions.