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РЕОЛОГИЧЕСКАЯ МОДЕЛЬ ТЕЧЕНИЯ 
ВЫСОКОКОНЦЕНТРИРОВАННОЙ ГИДРОСМЕСИ 

 
Выполнены экспериментальные исследования реологических свойств высококонцен-

трированной гидросмеси хвостов обогащения медно-цинковой руды; дано математическое 
описание движения ее в напорном трубопроводе. 

 
The experimental research is made in the laboratory of hydrotransport. It includes determina-

tion of rheological properties of copper-zinc ore’s high-concentrated hydromixtures. As a result 
there is a mathematical description of its flow in the pressure head pipeline. 

 
 
В последние годы во всем мире идет 

активный поиск и разработка систем скла-
дирования сгущенных хвостов обогащения в 
хвостохранилища и для закладки отрабо-
танных пространств в рудниках. 

Технология подготовки хвостов обога-
щения и транспорт их по трубопроводам 
требуют специального оборудования для 
сгущения и перекачки. В создании и реали-
зации систем транспортирования и склади-
рования вязкопластичных пастообразных 
гидросмесей хвостов обогащения активную 
роль сыграли компания «GENO Pumps» и 
предприятия «Outokumpu» (Финляндия). 

Для определения расхода при движении 
вязкопластичной пастообразной гидросмеси 
в структурном бингамовском режиме пред-
положим, что расход ее выражается как 
сумма расхода ядра потока и кольцевой зоны 

Q = Q0 + Q1.                        (1) 

Рассмотрим течение гидросмеси в ци-
линдрической трубе радиусом R1, длиной l и 
перепадом давления ΔP (рис.1). 

Для описания деформационного пове-
дения высококонцентрированных гидро-
смесей, обладающими реологическими 
свойствами, Ю.К.Сафоновым предложено 
следующее соотношение: 
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где 0 – предел текучести; k – напряжение 
сдвига, соответствующее полному разруше-
нию структуры, c вязкостью см; τ – напря-
жение сдвига; n- показатель псевдопластич-
ности; φ – текучесть (подвижность); т – 
ньютоновская текучесть. 

Используя понятие эффективной вязко-
сти η, определяемой по уравнению Ньютона, 

 = 
dr
dU ,                          (3) 

где 
dr
dU  – градиент скорости; r  – радиус 

слоя жидкости; U  – скорость его движения. 
Запишем уравнение (2) в следующем 

виде с учетом формулы (3): 

 

Рис.1. Распределение скоростей и напряжений  
по сечению потока 
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С помощью подстановки: 

dr = 


d
P
l2 .                         (5) 

Запишем уравнение (4) в виде 
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Обозначаем 
( 0 ) = х;  dõd  .                  (7)  

Подставляем (7) в уравнение (6) и ин-
тегрируем его: 
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Постоянную интегрирования найдем из 
граничных условий r = R,  = R, U = 0: 
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Подставляя (9) в уравнение (8), получим: 
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Уравнение (10) справедливо при значе-
ниях r от r0 до R. При r = r0 и U = 0U  ско-
рость ядра потока равна 
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Зная эпюры распределения скоростей 
(рис.1), определяем расход гидросмеси по 
уравнению (1) для ядра потока и кольце-
вой зоны 
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Интегрируем уравнение (5): 
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Выбирая граничные условия r = R, 
 = R и подставляя в (14), получим 

R – r0 = ).(2
0P

  

Из уравнения (14) находим радиус 
кольцевой зоны 

x
P

r
P

rr






 2)(2

000 .        (15) 

Подставляя (15) в уравнение (13), по-
лучим 
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Интегрируем полученное уравнение: 
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Подставляем значение скорости ядра U0 
потока гидросмеси в уравнение (12): 
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Принимая ñòò /1 nPR   и подстав-
ляя в уравнение (16), определяем расход в 
кольцевой зоне 
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Предварительные результаты экспери-
ментов, выполненных на капиллярном и ро-
тационном вискозиметрах, показали, что 
при значениях градиента скорости меньше 
100 с–1 опытная зависимость графически 
представляется прямой (рис.2). 

Обобщенная реологическая кривая 
описывается моделью Балкли – Гершеля: 
 = 0 + kγn. 

Предполагаем, что распределение ско-
ростей в поперечном сечении трубопровода 
при течении пастообразной гидросмеси ана-
логично распределению скоростей при дви-
жении структурной суспензии угля (рис.3).  

При скоростях потока U < 1 м/с 
(0 <  < а) ядро занимает большую часть 
поперечного сечения трубопровода, с уве-
личением скорости ядро уменьшается 
(а <  < k). Турбулентный режим потока 
начинается при скорости U > 2,5 м/с. 

На основании выполненного анализа 
предложено описывать течение пастообраз-
ной гидросмеси реологической кривой, со-
стоящей из трех зон (см. рис.2): при напря-
жениях (0 <  < а) – течение в бингамов-
ском режиме с практически неразрушенной 
структурой; в интервале напряжений от а 
до k – течение в переходном режиме с не-
прерывно разрушающейся структурой; при 
напряжениях  > k – течение в турбулент-
ном режиме. 

При напряжениях 0 <  < а наблюда-
ется течение без разрушения структуры, а 
этот режим характеризуется значением наи-
большей вязкости 1. При напряжениях 
больше а происходит течение с непрерывно 
разрушающейся структурой, т.е. 1 > 2. 

В соответствии с предлагаемой моде-
лью течения пастообразной гидросмеси вы-

 

Рис.2. Реологическая кривая течения  
высококонцентрированной гидросмеси  

хвостов обогащения 
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Рис.3. Эпюры скоростей по опытным данным: 
а – Р.Шищенко для глинистых суспензий;  
б – В.Трайниса для угольных суспензий 
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полним ее математическое описание сле-
дующей системой уравнений: 

 = 0 + 1γ;  r€[0, а];  n = 1; 

 = 0 + kγn;  r€[а, k];                (19)  

 = minγ;   > k;  n = 1. 

При наличии экспериментальных данных 
по реологическим свойствам гидросмеси мед-
но-цинковой руды в хвостохранилище в виде 
 = f (S) и гидравлических параметров потока, 
открывается возможность создания методики 
расчета системы гидротранспорта пастооб-
разных хвостов обогащения от фабрик до хво-
стохранилища. 

Выводы 
 
1. Предварительные эксперименты по 

определению реологических свойств гидро-
смеси хвостов обогащения медно-цинковой 
руды показали, что при концентрациях 
твердого по массе 25 % она приобретает 
свойства неньютоновской жидкости. 

2. По полученным уравнениям (17) и 
(18) можно определить расход пастообраз-
ной гидросмеси в трубопроводе в зависимо-
сти от ее реологических свойств и гидрав-
лических параметров потока, определяемых 
экспериментально. 

 


