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РАСПРОСТРАНЕНИЕ ВОЛНЫ ВЕРТИКАЛЬНОЙ ПОЛЯРИЗАЦИИ  
В БЕСКОНЕЧНОМ ПЛАЗМЕННОМ СЛОЕ  

С МАКСИМУМОМ ЭЛЕКТРОННОЙ КОНЦЕНТРАЦИИ 
 

Рассмотрена одномерная задача рассеяния плоской волны вертикальной поляризации 
симметричным плазменным слоем с максимумом электронной концентрации и бесконечно-
малыми потерями. Новым способом доказано, что волна вертикальной поляризации не пройдет 
за точку с максимальной концентрацией электронов, если потери в слое устремить к нулю. 
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DISTRIBUTION OF THE WAVE OF VERTICAL POLARIZATION  
IN THE INFINITE PLASMA LAYER WITH THE MAXIMUM  

OF THE ELECTRONIC CONCENTRATION  
 

The problem of dispersion of a flat wave of vertical polarisation by a plasma layer with a 
maximum of electronic concentration and infinitesimal losses is considered. With use of the theorem 
of an average in the new way it is proved that the wave of vertical polarisation will not pass for a 
point with the maximum of electronic concentration if loss in layer to direct to zero. 

Key words: shielding of the vertically-polarised wave, a dispersion problem. 
 
 
В радиофизике хорошо известен эффект 

экранирования волны вертикальной поляриза-
ции (другие названия ТМ-волна, волна р-поля-
ризации) плазменными слоями конечной 
толщины и бесконечно протяженными. Он 

                                                
 Живулин В.А. Эффект экранирования электро-

магнитного поля неоднородными плазменными слоями / 
В.А.Живулин, Г.И.Макаров // Проблемы дифракции и 
распространения волн. 1974. Вып.13. С.120. 

Zhivulin V.A., Makarov G.I. Effect of shielding of an 
electromagnetic field non-uniform plasma layers // Problems 
of diffraction and distribution of waves. 1974. Issue 13. P.120. 

 Зернов Н.Н. Построение решения эталонного урав-
нения для задачи о распространении плоской волны верти-
кальной поляризации в бесконечном слое с максимумом 
электронной концентрации / Н.Н.Зернов, Г.И.Макаров // 
Изв. вузов. Радиофизика. 1976. Т.19. № 1. С.64. 

Zernov N.N., Makarov G.I. Construction of the deci-
sion of the reference equation for a problem about distribu-
tion of a flat wave of vertical polarisation to an infinite layer 
with a maximum of electronic concentration // Izv. High 
schools. Radio physics. 1976. Vol.19. № 1. Р.64. 

состоит в том, что на частоте поля, равной 
максимальной плазменной частоте, наклонно 
падающая на плазменный слой плоская вер-
тикально-поляризованная волна не пройдет 
за точку с максимальной концентрацией 
электронов, если потери в слое устремить к 
нулю. Этот эффект имеет место в случае, ко-
гда в окрестности точки максимума элек-
тронной концентрации вещественная часть 
функции диэлектрической проницаемости 
имеет нуль четной кратности.  

Точное аналитическое решение уравне-
ний Максвелла для поля волны вертикаль-
ной поляризации не известно до сих пор ни 
для одной модели рассматриваемого плаз-
менного слоя, а предложенные приближен-
ные решения очень громоздки, поскольку в 
них используется метод сжатых отображе-
ний для интегрального уравнения, соответ-
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ствующего исходному дифференциальному 
уравнению для магнитного или электриче-
ского поля волны в такой среде.  

Здесь доказан эффект экранирования 
волны для случая параболической аппрокси-
мации диэлектрической проницаемости в ок-
рестности точки максимума электронной кон-
центрации. Это доказательство опирается на 
теорему о среднем значении для определенно-
го интеграла от вещественной функции. 

Постановка задачи. Рассмотрим неод-
нородный изотропный бесконечно-протя-
женный плоскослоистый плазменный слой, 
выходящий с обеих сторон в вакуум. Выбе-
рем декартову прямоугольную систему ко-
ординат (X, Y, Z) таким образом, чтобы ось Z 
была перпендикулярна слою. Будем пола-
гать, что тяжелые частицы (ионы и молеку-
лы) в нем неподвижны, а пространственная 
дисперсия пренебрежимо мала. Диссипа-
тивные процессы учтем посредством введе-
ния эффективной частоты столкновений 
электрона )(z , которую будем считать по-
стоянной в окрестности точки 0z  , где 
достигается максимум электронной концен-
трации. Отношение  /  считаем малым 
параметром задачи: 1/   (здесь  – 
частота волны). Пусть плоская монохрома-
тическая электромагнитная волна верти-
кальной поляризации падает со стороны 
z    под углом 0  к оси Z и ХZ – плос-
кость падения волны, в которой лежит ее 
электрический вектор. Будем считать, что 
частота волны равна максимальной плаз-
менной частоте слоя, а вещественная часть 
комплексной функции диэлектрической 
проницаемости  имеет в точке 0z   нуль 
второй кратности.  

Полагая, что магнитное поле волны 
)sinexp( 0 tiikxHH y  , для комплекс-

ной амплитуды H  имеем уравнение  

0)( 22
0 




 HHH s
s

ss .          (1) 

Здесь 0sin  , l
c


0 , 
l
zs   – неза-

висимая безразмерная переменная. Не ума-
ляя общности, в качестве характерного 

масштаба l  выберем толщину слоя на уров-
не 5,0Re  .  

Функцию комплексной диэлектриче-
ской проницаемости среды ( )s при малых 
значениях s  зададим в виде  

2si 



 ,  1s  .                  (2) 

Считаем, что плазменный слой при 
1s   достаточно быстро переходит в ваку-

ум, т.е. при 1s   концентрация электронов 

и потери в слое с ростом s  настолько бы-
стро стремятся к нулю, что ВКБ-решения 
уравнения (1) при s   имеют вид пло-
ских волн. При этом условии существует 
решение уравнения (1), удовлетворяющее 
принципу излучения при s  . Для оп-
ределенности положим амплитуду падаю-
щей волны равной единице. Тогда гранич-
ные условия (на бесконечности) для иско-
мого решения уравнения (1) запишутся при 
s   и s   соответственно в виде 

)cosexp()( 00  siTH ;            (3) 

)()cosexp( 00  RsiH )cosexp( 00  si , (4) 

где T  и R  – коэффициенты прохождения и 
отражения волны.  

На вещественной оси (s) функция (s) 
не имеет нулей при   0. В соответствии с 
теоремой Коши – Ковалевской существует 
единственная аналитическая функция, опре-
деленная на вещественной оси, которая яв-
ляется решением задачи (1)-(4).  

Теорема. При произвольном значении 
  0 0)(lim

0



T .  

Доказательство: Как видно из (2), 
уравнение (1) имеет на комплексной плос-
кости (s) две регулярные особые точки  







 






4

exp)0(
2,1 is ,  

являющиеся нулями функции (s). При 
стремлении потерь в слое к нулю они выро-
ждаются в одну особую точку 0)0( s , в ко-
торой вронскиан дифференциального урав-
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нения (1) обращается в ноль, а его решение 
перестает быть аналитической функцией в 
окрестности этой точки.  

Чтобы найти коэффициент прохожде-
ния волны при потерях, равных нулю, рас-
смотрим сначала случай, когда потери малы, 
но не равны нулю. Проведем на комплекс-
ной области (s) два разреза из точек )0(

2,1s  па-
раллельно мнимой оси, которые не пересе-
кают вещественную ось. В такой односвяз-
ной области функция Н(s) является одно-
значной аналитической функцией пере-
менной s. Поэтому задачу об отыскании 
решения на вещественной оси s  можно за-
менить задачей построения решения урав-
нения (1) на произвольной гладкой кривой, 
проведенной в комплексной области (s), ко-
торая не пересекает эти разрезы. В качестве 
такой кривой выберем произвольную глад-
кую кривую abcd , в которой точки a  и d  – 
это соответственно минус и плюс бесконеч-
ность на вещественной оси, а средний уча-
сток bc  задан в параметрическом виде 

tis 





 





4

exp ,                   (5) 

где t пробегает значения от 0íà÷ tt   до 
0êîí tt  ,  

2
1

4
1;0 













t ,               (6) 

На комплексной плоскости (s) участок 
bc  рассматриваемой кривой лежит в круге 
Kr(0) с центром в точке 0s  и радиусом 

2
1













r , который при 0  уменьшает-

ся до нуля. 
Докажем (вспомогательное) утвержде-

ние 1: решение Н(s, ) задачи (1)-(4) в точке 
0s   стремится к нулю, если  устремить к 

нулю. Перепишем уравнение (1) в дивер-
гентной форме: 

H
ds
dH

ds
d













2
2
0

1  

и проинтегрируем его от точки  

04
exp tisb 






 




  

до точки  

04
exp tisc 






 




 , 

которые являются концами прямолинейного 
участка bc . В результате интегрирования 
вдоль участка bc  с учетом (5) получим со-
отношение 




























2

2
0 1)()( isHsH bc  







 































4
exp1~)~(

2
22

0 isdsH
c

b

s

s

 









0

0

21
)(

t

t

dt
t
tH .  

Комплексную функцию ( )H t  предста-
вим в виде суммы ее вещественной ( )U t  и 
мнимой ( )iV t  частей и перепишем инте-

грал 
0

0

2

( )
1

t

t

H t dt
t   в виде комбинации двух ин-

тегралов от вещественных функций: 












0

0

0

0

22 1
)(

1
)(

t

t

t

t

dt
t
tVidt

t
tU . Применяя к каж-

дому из них теорему о среднем значении, 
получим: 




























2

2
0 1)()( isHsH bc  







 































4
exp1~)~(

2
22

0 isdsH
c

b

s

s

 

  021 )()( IsiVsU  ,                 (7) 
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где 
0

0

0 2

1
1

t

t

I dt
t


 ; 1s  и 2s  – «средние» точ-

ки, лежащие на отрезке bc . С учетом (6) 
при малом значении / интеграл 0I . 

Докажем, что левая часть равенст-
ва (7) по модулю не превосходит некото-
рого числа, не связанного с малым пара-
метром задачи.  

Чтобы это доказать, будем опираться на 
следующие соображения. При   0 решение 
дифференциального уравнения Н(s, ) явля-
ется аналитической функцией параметра , 
поскольку коэффициенты уравнения (1) для 
зависимости (2) таковыми являются. Следо-
вательно, имеет место утверждение 2: реше-
ние задачи (1)-(4) при малом, но отличном 
от нуля значении параметра  должно быть 
близко к решению в предельном случае, ко-
гда 0 .  

Если в уравнении положить 0 , т.е. 
рассмотреть в окрестности начала коорди-
нат зависимость 2s , то на основании 
приведенных в упомянутой работе Н.Н.Зер-
нова и Г.И.Макарова линейно-независимых 
решений этого уравнения (когда особые 
точки уравнения слились в одну точку), ко-
торые выражаются через степенные и вы-
рожденные гипергеометрические функции, 
нетрудно убедиться в том, что как сами два 
фундаментальных решения (одно из кото-
рых удовлетворяет принципу излучения 
при s   и не удовлетворяет ему при 
s  , а другое решение обладает проти-
воположными свойствами), так и произ-
водные от этих фундаментальных решений 
конечны в точке 0s  . Значит и при не рав-
ных нулю, но стремящихся к нулю значени-
ях  решение задачи (1)-(4) и его производ-
ная остаются ограниченными в точке 0s  . 
На основании сказанного левая часть равен-
ства (3) конечна. 

В равенстве (7) устремим параметр  к 
нулю. Как было сказано выше, радиус r  
круга rK , в котором лежит участок bc , при 
этом стремится к нулю. Следовательно, и 
значения 1s  и 2s , которые лежат на отрез-
ке bc  также стремятся к нулю. Множитель, 

стоящий перед суммой  )()( 21 siVsU   в 
правой части этого равенства, при стремле-
нии потерь в слое к нулю, с учетом (6), стре-
мится к бесконечности, значит, сумма 
 )()( 21 siVsU   стремится к нулю. В итоге 
получим, что решение Н(s, ) задачи (1)-(4) 
в точке 0s   будет равно нулю при 0 . 
При стремлении потерь в слое к нулю врон-
скиан дифференциального уравнения (1) в 
точке 0s   для зависимости (2) стремится к 
нулю и решение перестает быть аналитиче-
ской функцией в окрестности этой точки, 
так что продолжение решения при переходе 
через точку 0s   перестает быть однознач-
ным. Однако мы нашли, что в точке 0s   
предел этого аналитического решения при 

0  равен нулю. Получив это условие, 
мы можем свести задачу о нахождении ко-
эффициента прохождения к решению сле-
дующей задачи. Найдем решение уравне-
ния (1) для функции (2) при 0  при неот-
рицательных значениях s , которое подчи-
няется принципу излучения при s  , 
т.е. условию (3), и удовлетворяет (краевому) 
условию 

0
lim ( ) 0
s

H s


 .                     (8) 

На основании формул, приведенных в 
той же работе, нетрудно убедиться, что если в 
коэффициентах уравнения (1) положить 

0 , то в точке 0s   решение 1( )H s  урав-
нения (1), которое удовлетворяет принципу 
излучения при s  , т.е. имеет асимпто-
тику: при s   )cosexp( 01  siH , ока-
зывается не равным нулю. Поэтому усло-
вие (8) для решения этой второстепенной за-
дачи может быть выполнено только в случае 

0T  . Привлекая упомянутое выше утвер-
ждение 2 о близости решения задачи (1)-(4) 
при малых потерях к предельному значению 
для ее решения при нулевых потерях, заклю-
чаем, что решение исходной задачи характе-
ризуется тем, что при 0  имеем 0)( T . 
На этом доказательство теоремы завершено. 

Как было упомянуто, решению этой за-
дачи был посвящен целый ряд исследова-
ний. В них очень громоздким и сложным 
способом был получен порядок стремления 
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к нулю коэффициента прохождения при 
уменьшении потерь до нуля, и тем самым 
доказан эффект экранирования. 

Применив рассмотренный выше метод к 
доказательству экранирования, мы не можем 
получить характер стремления коэффициента 
T  к нулю. Однако само доказательство вы-
глядит элементарным по сравнению со слож-
ными выкладками в работе В.А.Живулина и 
Г.И.Макарова, занимающими несколько де-
сятков страниц и требующих для обоснования 
сходимости метода сжатых отображений до-
полнительных исследований, включая доказа-
тельство (квазиравномерной) сходимости ря-
да последовательных приближений.  

При учете пространственной диспер-
сии коэффициент прохождения вертикаль-
но-поляризованной волны уже отличен от 
нуля, и имеет место ее трансформация в 
плазменные колебания. Если же простран-
ственная дисперсия пренебрежимо мала, 
то волна практически полностью отража-
ется от такого слоя. Рассмотрение данной 
задачи имеет не только физический инте-
рес с точки зрения вопроса о поляризаци-
онной фильтрации поля, но и чисто мате-
матический интерес в связи с изучением 
поведения решения дифференциального 
уравнения с вырождающимися особыми 
точками.  


