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МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРИКЛАДНЫХ ЗАДАЧ 
МЕХАНИКИ ГОРНЫХ ПОРОД И МАССИВОВ

Многообразие горно-геологических условий залегания пологих пластов и продол­
жающийся рост глубин разработки месторождений полезных ископаемых приводят ис­
следователя к необходимости анализа напряженно-деформированного состояния масси­
вов горных пород вокруг подземных горных выработок всевозможного назначения и раз­
личного очертания.
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MATHEMATICAL MODELLING OF APPLIED PROBLEMS 
OF ROCK MECHANICS AND ROCK MASSIFS

The variety of the mining and geological conditions with further increasing in depth of the 
development of bedded deposits leads to necessity for the analysis of stress and strain state near 
different types of excavations.
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При математическом моделировании 
геомеханических задач часто приходится 
учитывать нелинейность процесса деформи­
рования горных пород [1]. Использование 
аналитических методов решения нелиней­
ных задач, как правило, не приводит к необ­
ходимому результату, а численные методы 
без каких-либо значительных модификаций 
могут быть успешно применены для реше­
ния таких задач.

Численные методы позволяют рассчи­
тывать поля напряжений, деформаций и пе­

ремещений, возникающие в несущих конст­
рукциях, в элементах крепи, во вмещающем 
массиве. На основе полученных решений 
возможен прогноз поведения пород вокруг 
выработок, оценка их устойчивости, выбор 
подходящих материалов для строительства 
различных сооружений, обоснование наибо­
лее устойчивых конструктивных схем, по­
зволяющих значительно сократить вычис­
лительные затраты.

При численном моделировании различ­
ных геомеханических процессов, анализе
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устойчивости подземных выработок, строи­
тельных конструкций и других инженерных 
сооружений используются различные про­
граммные пакеты, основанные на реализа­
ции эффективных численных методов [3 ]. 
Так, в России и за рубежом широко исполь­
зуются программные продукты FLAC 
2D/3D, UDEC (© Itasca Consulting Group, 
US), Plaxis 2D, Plaxis 3D Foundation, Plaxis 
3D Tunnel (© PLAXIS BV, Netherlands) и 
другие.

В частности, достаточно эффективно 
применяются программные продукты, осно­
ванные на использовании метода конечных 
разностей (МКР), позволяющие получать 
решения многих важных геомеханических 
задач. Например, одним из таких продуктов 
является программный пакет FLAC. Этот 
пакет постоянно модифицируется и является 
одним из самых мощных и широко распро­
страненных программных пакетов в совре­
менной горной практике.

Все большее распространение получает 
также пакет UDEC, реализующий в своем 
программном коде методы механики дис­
кретных сред -  и в силу того, что горные 
породы являются именно дискретными сре­
дами, разбитыми на отдельности различны­
ми системами трещин, -  позволяющий наи­
более адекватно оценивать геомеханические 
процессы, протекающие в массиве горных 
пород при отработке месторождений полез­
ных ископаемых.

К недостаткам вычислительных про­
грамм можно отнести, как правило, отсутст­
вие обоснованности применяемого матема­
тического аппарата, заложенного в про­
грамме. Отметим также и достаточно слож­
ный интерфейс, не позволяющий инженерам 
быстро овладеть техникой решения задач 
геомеханики с помощью таких программ.

Среди механиков-прикладников широ­
кую известность получил метод конечных 
элементов (МКЭ). Этот метод относится 
к числу вариационно-разностных. В нем 
осуществляется дискретизации расчетной 
области, занимаемой телом, на конечные 
элементы. Для плоской области чаще всего 
это треугольники и параллелограммы, а для 
пространственной -  тетраэдры и параллеле­

пипеды. Внутри каждого элемента задаются 
функции формы, определяющие перемеще­
ния произвольной точки внутри элемента по 
перемещениям узловых точек (точки сты­
ковки конечных элементов). Координатные 
функции в этом случае будут всюду равны 
нулю, кроме конечного элемента, внутри 
которого они будут совпадать с функциями 
формы. В качестве неизвестных коэффици­
ентов берутся узловые перемещения. Далее 
задача (результат процесса минимизации 
функционала энергии) сводится к чисто ал­
гебраической проблеме решения системы 
уравнений.

Хотя МКЭ и является эффективным 
методом исследования напряженно-дефор­
мированного состояния (НДС) конструк­
ций разнообразных форм, он имеет доста­
точно существенный недостаток, а именно: 
проверка надежности полученных числен­
ных результатов, как правило, осуществ­
ляется только сопоставлением с их имею­
щимися точными или известными реше­
ниями.

Таким образом, МКЭ сводится к ап­
проксимации сплошной среды с бесконеч­
ным числом степеней свободы совокупно­
стью подобластей (или элементов), имею­
щих конечное число степеней свободы. За­
тем между этими элементами каким-либо 
способом устанавливаются взаимосвязи, т.е. 
МКЭ представляет собой попытку преодо­
леть вычислительные трудности, связанные 
с проблемой сплошности среды (получение 
численного решения задач теории упругости 
в этом случае весьма затруднительно), пу­
тем его разбиения на отдельные элементы, 
взаимодействующие между собой только в 
выбранных (узловых) точках. В этих точках 
вводятся фиктивные силы, эквивалентные 
поверхностным напряжениям и распреде­
ленные по границам элементов. Если такая 
идеализация допустима, то любая задача 
сразу приводит исследователя к стандарт­
ным задачам строительной механики, а ме­
тодика решения таких задач хорошо извест­
на многим инженерам.

Исследователям удалось получить дос­
таточное количество аналитических или 
численных решений плоских задач, которые
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всегда выделяются особо. Во-первых, такие 
решения являются результатом успешного 
применения численных методов; во-вторых, 
при решении плоских краевых задач геоме­
ханики используются значительные матема­
тические упрощения, по сравнению с про­
странственными; в-третьих, существующие 
точные аналитические решения ряда дву­
мерных задач позволяют оценить надеж­
ность и точность самих численных методов.

Однако реальное поведение массива 
в условиях увеличения глубины отработки 
и постоянно усложняющихся горно-геоло­
гических условий (ГГУ) приводит исследо­
вателя к необходимости решения задач в 
трех- и четырехмерной (с учетом динамиче­
ских явлений) постановках. Несмотря на 
сложность получения решений в этих слу­
чаях, метод конечных элементов может 
также оказаться эффективным. Отметим, 
что при решении прикладных задач геоме­
ханики, как правило, не рассматривается 
геометрическая нелинейность процесса де­
формирования горных пород, учет которой 
существенно необходим во многих случаях 
горного производства. Метод конечных эле­
ментов является достаточно универсальным, 
чтобы преодолеть и эту трудность.

Таким образом, применение универ­
сальных численных методов, таких как 
МКЭ и МКР, и разработка прикладной 
части эффективных вычислительных про­
грамм позволяет не только своевременно 
предотвращать опасные проявления гор­
ного давления в выработках, но и позитив­
но решать вопросы безопасности ведения 
горных работ.

Для решения геомеханических задач 
при помощи МКЭ необходимо знать не 
только конструктивные особенности выра­
ботки, механические свойства массива гор­
ных пород (модуль Юнга E, коэффициент 
Пуассона v), но и вид потенциала П (работу 
деформации), определяющего связь между 
напряжениями о j  и деформациями Sj.

Критерием выбора вида упругого по­
тенциала является адекватность математи­

ческого описания процесса деформирования 
реальному поведению массива горных по­
род. При малых деформациях используемый 
упругий закон должен соответствовать за­
кону Гука. На практике при выборе потен­
циала предпочтение отдается потенциалам 
наиболее простых форм. Чаще всего исполь­
зуют разложение потенциала П по степеням 
его инвариантов I 1,12 и I3:

ададад
n ^ I X X C k (i,  - 3)i(12 - 3 ) j (i ,  - 1 )k ,

i=0 j=0k=0

где C000 = 0, а остальные неизвестные коэф­
фициенты определяются из эксперимента, т.е. 
используется феноменологический подход.

Простейшим упругим потенциалом 
данного класса является неогуковский по­
тенциал (потенциал Трелоара)

п = |2 ( I  -  3 ),

где s = Sj + s 2 + s 3 = Ij -  первый инвариант
тензора деформаций, который связан с от­
носительным изменением объема (объемной 
деформацией), ц = E  /[2(1 -  v)] -  модуль 
сдвига.

Часто для решения конкретных приклад­
ных задач используется и потенциал Муни

п  =  4  ц [ ( 1  +  р ) (  i 1 -  3 )  +  ( 1  - р ) (  12 -  3 ) ] =

=  C 1 ( I 1 -  3 )  +  C 2 (  1 2 -  3 ) ,

при в = 1 (C2 = 0 ) переходящий в неогуков- 
ский потенциал.

Для упругой среды (грунтового масси­
ва) потенциал представляется в следующем 
виде [2 ]:

п = I + 2  2 ' (1)

где к  = 1 -  2v / E  -  модуль объемного сжа­

тия; Г = 2 J I2  -  интенсивность деформаций 

сдвига; I 2 -  второй инвариант девиатора 
деформаций,
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В

Разбиение массива горных пород на конечные 
элементы вокруг одиночной подземной горной 

выработки кругового сечения

12 e1e2 + e2e3 + e3e1 

= [(Sj - S 2 ) 2 + (s 2 _ S 3) 2 + (S3 _ S 1)2 ] / 6 .

Поскольку массив горных пород пред­
полагается изотропным, потенциал является 
только функцией главных инвариантов тен­
зора деформации: П  = П (I 1, 12 ,13 ) . Для того, 
чтобы преобразовать равенство ( 1 ) к глав­
ным инвариантам тензора деформации, за­

пишем Г 2 = ( 2 д/т2  ) 2 с учетом s = I j в виде

П = I2
1 -  2 v

■ + 2 1 2 -  612 
1 + v

(2 )

Равенство (2) можно преобразовать, 
воспользовавшись упругой константой Ламе 
X = E v  /[(1 -  2v)(1 + v)]. Тогда для упругого 
грунтового массива окончательно получим

П  =
X

( 1  - v )  - 12 ( 1  -  2 v)

где 12 = SjS2 + s 2s 3 + s 3Sj -  второй инвари­
ант тензора деформаций; X -  константа Ла­
ме; v -  коэффициент Пуассона; Sj , s 2, s 3 -  
главные деформации.

Формулы для сжимающих подземную 
горную выработку напряжений известны и 
являются широко применяемыми в геомеха-

2

v

нике характеристиками напряженно-дефор­
мированного состояния массива в прикон- 
турной зоне выработки:

a  y = уЯ ; а  х = ХуЯ ; а  ̂  = 0,

где a x, a y, axy -  компоненты тензора напря­
жений; у -  объемный вес массива пород; X -  
коэффициент бокового распора (давления); 
H  -  глубина заложения выработки.

Сразу укажем, что для простоты расче­
тов иногда X принимается равным единице и 
это условие равносильно равномерности 
распределения напряжений вокруг круглой 
выработки, хотя на практике чаще рассмат­
риваются другие его значения (0 ,6 -0 ,7 ) и 
даже X > 1.

Для проверки эффективности разрабо­
танной вычислительной программы, осно­
ванной на МКЭ, была решена классическая 
задача по определению НДС неподкреплен- 
ной выработки круглого сечения в однород­
ном и изотропном массиве, физико­
механические свойства которого заранее 
известны. Поскольку указанная задача явля­
ется осесимметричной, рассматривается 
четверть выработки, расположенная в пер­
вом квадранте. После задания входных па­
раметров вычислительная программа авто­
матически разбивает область на конечные 
элементы и выводит разбиение на экран (см. 
рисунок). Выходными параметрами про­
граммы являются компоненты вектора сме­
щений, тензоров деформаций и напряжений 
слоев, прилегающих к выработке массива. 
Последние, в конечном итоге, определяют 
как безопасность ведения горных работ, так 
и необходимые мероприятия по закрепле­
нию подземных горных выработок. Следует 
отметить, что решение подобной задачи для 
пластинки с круглым отверстием выполнено 
многими исследователями по различным 
методикам. Их результаты и были взяты за 
основу в качестве критерия оценки резуль­
татов, полученных от применения разрабо­
танной вычислительной программы.

Приведем результаты численного рас­
чета при следующих значениях параметров:
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Е  = 2 1 0 4 МПа; радиус выработки R  = 1,5 м; 
у = 2 1 0 4 H/м3; H  = 100 м; v = 0,45; А = 0,65. 
При таких числовых параметрах получены 
значения сжимающих выработку напряже­
ний <5у = 2 МПа, а х = 1,3 МПа, uxy = 0; в точ­
ках A  и B: u\a  = 0,14 см, u |b  = 0,11 см.

Таким образом, разработан и реализо­
ван достаточно эффективный алгоритм чис­
ленного решения задач теории упругости 
(на примере деформации подземной горной 
выработки кругового сечения). Сравнение 
результатов расчета по разработанной вы­
числительной программе с результатами, 
полученными другими авторами и по дру­
гим численным и аналитическим методам, 
указывает на их вполне пригодную сопоста­
вимость.
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