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В статье представлены результаты исследований возможности повышения эффективности бурения на-
клонно прямолинейных участков скважин винтовыми забойными двигателями (ВЗД) при комбинированном 
способе бурения с вращением колонны бурильных труб (КБТ). Цель – обеспечение устойчивой работы ВЗД 
при одновременном вращении КБТ за счет снижения амплитуды колебаний регулированием параметров ре-
жима бурения на основе математического моделирования системы ВЗД – КБТ. 

Приведены результаты экспериментальных исследований по определению экстремумов распределения 
поперечных и осевых колебаний корпуса ВЗД в зависимости от геометрических параметров героторного ме-
ханизма и режимов, обеспечивающих устойчивую эксплуатацию.  

Концептуально изложены подходы к разработке математической модели и методики, позволяющей оп-
ределить диапазон автоколебаний системы ВЗД – КБТ и границы вращательного и поступательного волново-
го возмущения для разнородного стержня с установленным ВЗД при бурении наклонно прямолинейных уча-
стков скважины. Данная математическая модель динамики системы ВЗД – КБТ дает возможность прогнозиро-
вать оптимальные параметры режима бурения направленных скважин, обеспечивающих устойчивую работу 
компоновки низа бурильной колонны. 
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Введение. При бурении протяженных наклонно направленных и горизонтальных участков 

скважин с применением двигателей объемного принципа действия часть осевой нагрузки на до-
лото не передается, что обусловлено силой трения, возникающей между стенками скважины и 
бурильным инструментом [2].  

Для обеспечения требуемой нагрузки на долото в производстве используется комбиниро-
ванный способ бурения. Особенность способа заключается в совместной эксплуатации колонны 
бурильных труб (КБТ) и винтового забойного двигателя (ВЗД) [9]. В процессе их совместной ра-
боты в зависимости от типа ВЗД, его энергетических характеристик и КБТ, представляющих со-
бой упругий несбалансированный стержень, могут возникать крутильные, поперечные и осевые 
колебания [4, 6, 10]. 

Необходимо отметить, что ВЗД, расположенный в нижней части КБТ, имеет собственные 
биения корпуса, природа возникновения которых связана с работой его силовой секции, пред-
ставленной планетарным редуктором. Причем частота, амплитуда и направление биений корпуса 
зависят от конструкции героторного механизма, гидравлической составляющей потока бурового 
раствора, а также нагрузки на долото [3]. 

Для определения параметров режима бурения скважин комбинированным способом требу-
ется разработка методики, позволяющей на основе математического моделирования упругих 
свойств напряженно-деформированного состояния КБТ и характеристик ВЗД обеспечить про-
гноз и управление устойчивой работы компоновки низа бурильной колонны (КНБК) [11, 12].  

Методика и результаты исследований. Устойчивость эксплуатации ВЗД характеризуется 
режимом работы силовой секции, при котором отсутствует интенсивное снижение частоты вра-
щения ротора с увеличением момента на валу двигателя [1]. 

Известно, что ось ротора вращается вокруг собственной оси, а также совершает переносное 
движение вокруг оси статора, направленное против часовой стрелки. Причем частота переносно-
го (планетарного) вращения оси ротора относительно оси статора выше частоты вращения рото-
ра вокруг собственной оси. 
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Угловая скорость вращения оси ротора относительно оси статора, определяющая частоту 
биений корпуса, 

ωn = –zz ωr,                                                                     (1) 

где zz – число зубьев ротора; ωr – угловая скорость вращения ротора вокруг собственной оси. 
Биения корпуса двигателя зависят от инерционных Fин и гидравлических Fг сил, действую-

щих на ротор, 
Fин = m 2z ω2e,                                                                  (2) 

Fг = Минд/еz1,                                                                  (3) 

где Минд – индикаторный момент; е – эксцентриситет; z1 и z2 – количество зубьев статора и рото-
ра; m – масса ротора; ω – угловая скорость. 

Во время запуска двигателя возникает перекашивающий момент, обуславливающий неста-
бильность перекатывания ротора по зубьям статора и приводящий к дополнительным биениям 
корпуса ВЗД.  

Перекашивающий момент равен 




4

2
д

п
DtP

M ,                                                                (4) 

где D – диаметр статора по впадинам зубьев; Pд – перепад давления; t – шаг ротора. 
Экспериментальные исследования биений корпуса двигателя выполняются на стенде. Стенд 

оборудован автоматической системой управления, обеспечивающей в режиме реального времени 
вывод на панель персонального компьютера основных энергетических характеристик ВЗД. Для 
исследования биений двигателя на корпусе устанавливаются датчики измерения колебаний.  

Результаты исследования виброускорения и амплитуды колебаний корпуса двигателя при 
разных режимах работы показаны на рис.1.  

На основе экспериментальных исследований определена частота вращения вала, обеспечи-
вающая минимальные поперечные колебания и оптимальные осевые биения двигателя.  

Моделирование работы инструмента осуществляется на усовершенствованной математиче-
ской модели Е.К.Юнина и В.К.Хегая [8]. 

При бурении скважины требуется определить сочетание нагрузки на долото по глубине P и 
частоты вращения ротора n0 таким образом, чтобы время бурения t заданного интервала было 
минимальным при условии оптимальных энергетических затрат [7].  

КБТ представим в виде составного стержня, включающего участок длиной L1 с наружным и 
внутренним диаметрами ,,

11 LL dD  участок утяжеленных бурильных труб (УБТ) длиной L2 с наруж-
ным и внутренним диаметрами 

22
, LL dD  и участок, представленный корпусом ВЗД и навигацион-

ной системой длиной L3 и диаметрами .,
33 LL dD  Текущая глубина скважины H = L1 + L2 + L3 в 

процессе бурения некоторого интервала увеличивается за счет углубления забоя. При этом будем 
считать, что L2, L3 = const, а за счет наращивания L1 + L возрастает величина H.  

 
 
 
 
 
 
 
 
 
 
 
 
 

1 1 1 2 2 2 3 3 3 
0 

1 

2 

3 

А
мп

ли
ту

да
 б

ие
ни

й 
ко

рп
ус

а,
 м

м 

1 1 1 2 2 2 3 3 3 

400 

300 

200 

100 

0 

В
иб

ро
ус

ко
ре

ни
е,

 
мм

/с
2  

Продольные вибрации корпуса ВЗД Поперечные вибрации корпуса ВЗД 

а б 

Рис.1. Амплитуда (а) и виброускорение (б) корпуса в зависимости от места установки датчика на корпусе двигателя 
1 – верхний переводник ВЗД; 2 – середина активной части рабочих органов ВЗД; 3 – верхний переводник шпинделя 
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Примем, что участки изготовлены из различных материалов. Поэтому первому, второму, 

третьему участку соответствует скорость распространения вращательных колебаний соответст-
венно ,,,

321 LLL   скорость распространения поступательных колебаний соответственно 
.,,

321 LLL   Расчетная схема для анализа поведения бурильной колонны при вращательном и 
поступательном движении представлена на рис.2. 

Дифференциальное уравнение вращательного и поступательного движения составного раз-
нородного стержня с граничными и начальными условиями [5]: 
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Граничные условия для вращательного и поступательного движения: 
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Рис.2. Расчетная схема исследования вращательных и поступательных колебаний работы системы ВЗД – КБТ 
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Начальные условия для вращательного движения при t = 0: 
 

φ1(s1, t = 0) = ;),()()()(
2

)(
1

33

нн
2

30
2

20
2

102
12

0

3

2

2

2

1

1

1

1 s
JG

nРMLnfLnfLnf
s

nf

LLLL 












































  

 

φ2(s2, t = 0) = f1(L1) + ;),()()(
2 2

33

нн
2

30
2

202
22

3

3

2

2

2

2 s
JG

nРMLnfLnf
s

f

LLL 





























  

 

φ3(s3, t = 0) = f1(L1) + f2(L2) + ;),()(
2

)(
3

33

нн
2

302
32

0

3

3

2

2 s
JG

nРMLnf
s

nf

LL
















  

 
s1 [0, L1],  s2 [0, L2],  s3 [0, L3]; 
 

,0
1 n

t



  ,0

2 n
t



  .0

3 n
t



  

 
Начальные условия для поступательного движения при t = 0: 
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где φ1(s1, t), φ2(s2, t), φ3(s3, t) – углы поворота текущих поперечных сечений колонны на соответ-
ствующих участках; s1, s2, s3 – текущее положение поперечного сечения; u1(s1, t), u2(s2, t), u3(s3, t) – 
поступательные перемещения текущих поперечных сечений колонны на соответствующих уча-
стках; s1, s2, s3 – текущее положение поперечного сечения; h – величина поступательного пере-

мещения с сообщением, поперечном усечению оборота; ,1
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противление поступательного перемещения бурильной колонны; n0 – скорость вращения верхне-
го торца колонны; G1, G2, G3 – модули сдвига материалов соответствующих участков; E1, E2, E3 – 
модули упругости материалов соответствующих участков при растяжении или сжатии; J1, J2, J3 – 
полярные моменты инерции поперечного сечения колонны на соответствующих участках; F1, F2, 
F3 – площадь поперечного сечения колонны на соответствующих участках; Mн(P, nн) – момент 
сопротивления вращению нижнего участка составного стержня со стороны горной породы; P – 
осевая нагрузка на торец нижнего участка составного стержня; P(nн) – осевая нагрузка на торец 

нижнего участка составного стержня; 
33

3
н

Lst
n




 – частота вращения торца нижнего участка 

составного стержня, 
22

11

JG
JG

  – коэффициент моментно-силового отношения первого и второго 

участков при вращении; 
33

22

JG
JG

  – коэффициент моментно-силового отношения второго и 

третьего участков; 
22

11

FE
FE

  – коэффициент моментно-силового отношения первого и второго 
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 – коэффициент моментно-силового отно-

шения второго и третьего участков при поступательном перемещении. 
Наиболее ясно данная задача решается для случая, в котором значения диссипативных чле-

нов системы равны нулю. Для решения используются следующие формулы:  
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где L1 – длина колонны бурильных труб; L2 – длина колонны утяжеленных бурильных труб; L3 – 
длина корпуса винтового забойного двигателя и навигационной системы; k – коэффициент отра-
жения волны, вращательных колебаний на границе раздела разнородных участков составного 

стержня, 
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 ; μ1, μ2, μ3 – коэффициенты 

диссипации на соответствующих участках, 
321

,, LLL   – скорость распространения враща-
тельных колебаний на соответствующих участках; Pв и Pн – осевые нагрузки на нижний торец 
корпуса винтового забойного двигателя, соответствующие верхней и нижней границам автоко-
лебаний; 

0n  – частота вращения ротора при Pв = Pн.  
Задача для случая, в котором значения диссипативных членов системы равны нулю, и глу-

бины распространения поступательных колебаний бурильного инструмента, представленного в 
виде составного стержня из трех разнородных участков, рассчитывается по системе (6). При этом 
производится замена G1, G2, G3 на E1, E2, E3 и J1, J2, J3 на F1, F2, F3, а также 

321
,, LLL   – скоро-

сти распространения вращательных колебаний  на скорость распространения поступательных 
колебаний 

321
,, LLL   на соответствующих участках. Полученные уравнения определяют усло-

вия возможности возникновения поступательных автоколебаний КБК, представленной в виде 
составного стержня в процессе совершения поступательного движения для углубления забоя 
скважины [13]. Осевые нагрузки на нижний торец корпуса винтового забойного двигателя, соот-
ветствующие верхней и нижней границам автоколебаний при поступательном движении Pв и Pн, 
определяются по уравнению (7). При этом производится замена скорости распространения вра-
щательных колебаний 

321
,, LLL   на 

321
,, LLL  , а модуль упругости G1, G2, G3 и полярный 

момент инерции сечения J1, J2, J3 меняются на E1, E2, E3 и на F1, F2, F3 соответственно. 
В результате проведенных расчетов по разработанной математической модели (5) выявлен 

диапазон наступления автоколебаний при вращении и поступательном перемещении системы 
ВЗД – КБТ.  

Входные параметры для проведения расчетов вращательного и поступательного движений: 
 
L1 = 1800 м;  L2 = 190 м;  L3 = 10 м;  J1 = 5,841∙10–6 м4;  J2 = 1,941∙10–6 м4;  J3 = 4,928∙10–6 м4; 

(7) 



 

 

DOI: 10.31897/PMI.2020.1.105 
 

В.С.Литвиненко, М.В.Двойников 
Методика определения параметров режима бурения… 

111 
Записки Горного института. 2020. Т. 241. С. 105-112  ● Нефтегазовое дело 

 

k = 0,106; G1 = G2 = G3 = 8∙1010 Па;  
321

,, LLL  = 3200 м/с;  n0 = [0; 7] рад/с;  

μ1 = 0,1;  μ2 = 0,2;  μ3 = 0,3; 

L1 = 1800 м;  L2 = 190 м;  L3 = 10 м; F1 = 1,018∙10–3 м2;  F2 = 1,81∙10–3 м2;  F3 = 8,042∙10–4 м2; 

k = 0,106;  Е1 = Е2 = Е3 = 2∙1010 Па;  
321

,, LLL  = 5320 м/с;  n0 = [0; 7] рад/с; 

μ1 = 0,1;  μ2 = 0,2;  μ3 = 0,3. 

 
Результаты математического моделирования представлены на рис.3. Сопоставление полу-

ченных результатов исследований колебаний корпуса ВЗД в стендовых условиях с расчетными 
значениями границ автоколебаний КБТ позволяют определить диапазон устойчивой работы сис-
темы ВЗД – КБТ. Значения, расположенные под линией, обозначенной нижней границей автоко-
лебаний Pв, означают отсутствие вибрации – равномерное поступательное и вращательное дви-
жение инструмента, между верхней Pн и нижней Pв границами – временную остановку (заклини-
вание), выше верхней Pн – торможение (отсутствие вращения). 

Разработанная методика определения требуемых параметров режима бурения наклонных 
участков скважины, обеспечивающих устойчивую работу КНБК, осуществляется следующим 
образом. 

Производится запуск ВЗД и определяется перепад давления при его эксплуатации в режиме 
холостого хода. Затем создается требуемая (по плану работ и геолого-техническому наряду) на-
грузка на долото и фиксируется перепад давления с учетом нагруженности героторного механизма. 
На основании диаграммы испытаний ВЗД на стенде графически определяется оптимальный диапа-
зон частоты вращения вала при соответствующем перепаде давления. Причем отмечается макси-
мально допустимое снижение частоты вращения вала ВЗД, соответствующее оптимальным ам-
плитудам поперечных колебаний корпуса. 

По разработанной математической модели производится расчет границ наступления автоко-
лебаний бурильной колонны. После построения графических зависимостей определяются требуе-
мая частота и нагрузка на долото, при которых КБТ находится в допустимом диапазоне устойчи-
вой работы. Учитывая режимы устойчивой работы КБТ, производится согласование с нагрузкой на 
долото, при которой ВЗД также будет находиться в режиме оптимальных энергетических ха-
рактеристик. В случае, если частота вращения вала ВЗД (согласно диаграмме стендовых испы-
таний), определенная по перепаду давления, уменьшилась более, чем на 70 %, производится 
снижение нагрузки на долото. На основе графических зависимостей (рис.3) диапазона границ 
наступления автоколебаний при заданных частотах вращения КБТ и нагрузки на долото, произ-
водится поправка частоты вращения верхнего привода с целью обеспечения устойчивой работы 
системы с сохранением механической скорости бурения [14, 15].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a б 

Рис.3. Границы вращательных (а) и поступательных автоколебаний (б) системы ВЗД – КБТ 
1 – Pн; 2 – Pв 
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Выводы. На основе экспериментальных исследований определены амплитуды и частоты 
колебаний корпуса ВЗД по всей длине силовой секции рабочих органов и шпиндельной части 
для различных режимов работы двигателя. Установлено, что для снижения амплитуды попереч-
ных колебаний двигателя и обеспечения его устойчивой работы диапазон частот вращения вала 
необходимо поддерживать в пределах 70 % от частоты вращения ВЗД в режиме холостого хода. 

Разработана математическая модель системы ВЗД – КБТ, позволяющая прогнозировать диа-
пазон наступления автоколебаний КБТ и границы вращательного и поступательного волнового 
возмущения для случая моделирования колонны как разнородного стержня при бурении наклон-
но прямолинейных участков скважины. 

Разработана методика определения требуемых параметров режима бурения наклонно пря-
молинейных участков скважины, обеспечивающих устойчивую работу КНБК, основанная на ус-
ловиях поддержания стабильного функционирования системы с учетом предельно допустимой 
частоты вращения ВЗД и границ наступления автоколебаний КБТ. 

Разработанные методика и технические рекомендации, направленные на обеспечение ус-
тойчивой работы ВЗД с одновременным вращением бурильной колонны при бурении наклонно 
направленных скважин, используются в филиале ООО «ЛУКОЙЛ-Инжиниринг» – «Когалым-
НИПИнефть». 
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